Graph Regression On Kit
المقاييس
R2
RMSE
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
اسم النموذج | R2 | RMSE | Paper Title | Repository |
---|---|---|---|---|
GATv2 | 0.826±0.000 | 0.453±0.826 | How Attentive are Graph Attention Networks? | |
GINDrop | 0.835±0.000 | 0.441±0.835 | DropGNN: Random Dropouts Increase the Expressiveness of Graph Neural Networks | |
TokenGT | 0.800±0.000 | 0.486±0.800 | Pure Transformers are Powerful Graph Learners | |
GCN | 0.814±0.000 | 0.469±0.814 | Semi-Supervised Classification with Graph Convolutional Networks | |
Graphormer | OOM | OOM | Do Transformers Really Perform Bad for Graph Representation? | |
PNA | 0.843±0.000 | 0.430±0.843 | Principal Neighbourhood Aggregation for Graph Nets | |
GAT | 0.833±0.000 | 0.443±0.833 | Graph Attention Networks | |
GIN | 0.833±0.000 | 0.444±0.833 | How Powerful are Graph Neural Networks? | |
ESA (Edge set attention, no positional encodings) | 0.841±0.000 | 0.433±0.841 | An end-to-end attention-based approach for learning on graphs | - |
0 of 9 row(s) selected.