HyperAI

Graph Regression On Esr2

المقاييس

R2
RMSE

النتائج

نتائج أداء النماذج المختلفة على هذا المعيار القياسي

جدول المقارنة
اسم النموذجR2RMSE
graph-attention-networks0.666±0.0000.510±0.666
dropgnn-random-dropouts-increase-the0.675±0.0000.503±0.675
masked-attention-is-all-you-need-for-graphs0.697±0.0000.486±0.697
semi-supervised-classification-with-graph0.642±0.0000.528±0.642
how-attentive-are-graph-attention-networks0.655±0.0000.518±0.655
how-powerful-are-graph-neural-networks0.668±0.0000.509±0.668
principal-neighbourhood-aggregation-for-graph0.696±0.0000.486±0.696
pure-transformers-are-powerful-graph-learners0.641±0.0000.529±0.641
do-transformers-really-perform-bad-for-graphOOMOOM