HyperAI

Graph Property Prediction On Ogbg Ppa

المقاييس

Ext. data
Number of params
Test Accuracy
Validation Accuracy

النتائج

نتائج أداء النماذج المختلفة على هذا المعيار القياسي

جدول المقارنة
اسم النموذجExt. dataNumber of paramsTest AccuracyValidation Accuracy
breaking-the-expressive-bottlenecks-of-graph-1No13693970.7976 ± 0.00720.7518 ± 0.0080
semi-supervised-classification-with-graphNo4794370.6839 ± 0.00840.6497 ± 0.0034
unlocking-the-potential-of-classic-gnns-forNo55475570.8258 ± 0.00550.7815 ± 0.0043
unlocking-the-potential-of-classic-gnns-forNo55496050.8077 ± 0.00410.7586 ± 0.0032
النموذج 5No40067040.7432 ± 0.00330.6989 ± 0.0037
deepergcn-all-you-need-to-train-deeper-gcnsNo23364210.7712 ± 0.00710.7313 ± 0.0078
how-powerful-are-graph-neural-networksNo32880420.7037 ± 0.01070.6678 ± 0.0105
flag-adversarial-data-augmentation-for-graph-1No23364210.7752 ± 0.00690.7484 ± 0.0052
flag-adversarial-data-augmentation-for-graph-1No18369420.6905 ± 0.00920.6465 ± 0.0070
النموذج 10No163461660.8201 ± 0.00190.7720 ± 0.0023
unlocking-the-potential-of-classic-gnns-forNo81736050.8107 ± 0.00530.7786 ± 0.0095
النموذج 12No37171600.7828 ± 0.00240.7523 ± 0.0028
flag-adversarial-data-augmentation-for-graph-1No19305370.6944 ± 0.00520.6638 ± 0.0055
flag-adversarial-data-augmentation-for-graph-1No32880420.7245 ± 0.01140.6789 ± 0.0079
how-powerful-are-graph-neural-networksNo18369420.6892 ± 0.01000.6562 ± 0.0107
النموذج 16No37586420.8140 ± 0.00280.7811 ± 0.0012
semi-supervised-classification-with-graphNo19305370.6857 ± 0.00610.6511 ± 0.0048
recipe-for-a-general-powerful-scalable-graphNo34345330.80150.7556 ± 0.0027