HyperAI

Graph Property Prediction On Ogbg Molhiv

المقاييس

Test ROC-AUC
Validation ROC-AUC

النتائج

نتائج أداء النماذج المختلفة على هذا المعيار القياسي

جدول المقارنة
اسم النموذجTest ROC-AUCValidation ROC-AUC
nested-graph-neural-networks0.7986 ± 0.01050.8080 ± 0.0278
edge-augmented-graph-transformers-global-self0.806 ± 0.0065-
graph-propagation-transformer-for-graph0.8126 ± 0.0032-
النموذج 40.7825 ± 0.01210.8009 ± 0.0078
النموذج 50.8208 ± 0.00370.8036 ± 0.0059
unlocking-the-potential-of-classic-gnns-for0.8040 ± 0.01640.8329 ± 0.0158
flag-adversarial-data-augmentation-for-graph-10.7683 ± 0.01020.8176 ± 0.0087
generalizing-topological-graph-neural0.7944 ± 1.40 -
graphnorm-a-principled-approach-to0.7883 ± 0.01000.7904 ± 0.0115
deepergcn-all-you-need-to-train-deeper-gcns0.7858 ± 0.01170.8427 ± 0.0063
how-powerful-are-graph-neural-networks0.7707 ± 0.01490.8479 ± 0.0068
weisfeiler-and-lehman-go-cellular-cw-networks0.8094 ± 0.00570.8277 ± 0.0099
النموذج 130.8060 ± 0.00100.8420 ± 0.0030
principal-neighbourhood-aggregation-for-graph0.7905 ± 0.01320.8519 ± 0.0099
flag-adversarial-data-augmentation-for-graph-10.7942 ± 0.01200.8425 ± 0.0061
nested-graph-neural-networks0.7834 ± 0.01860.8317 ± 0.0199
weisfeiler-and-lehman-go-cellular-cw-networks0.8055 ± 0.01040.8310 ± 0.0102
directional-graph-networks-10.7970 ± 0.00970.8470 ± 0.0047
do-transformers-really-perform-bad-for-graph0.8051 ± 0.00530.8310 ± 0.0089
hierarchical-inter-message-passing-for0.7880 ± 0.0082Please tell us
النموذج 210.8244 ± 0.00330.8329 ± 0.0039
semi-supervised-classification-with-graph0.7549 ± 0.01630.8042 ± 0.0107
flag-adversarial-data-augmentation-for-graph-10.7748 ± 0.00960.8438 ± 0.0128
adaptive-filters-and-aggregator-fusion-for0.7721 ± 0.01100.8366 ± 0.0074
interpretable-and-generalizable-graph0.8067 ± 0.09500.8347 ± 0.0031
النموذج 260.8420 ± 0.00150.8238 ± 0.0028
how-powerful-are-graph-neural-networks0.7558 ± 0.01400.8232 ± 0.0090
improving-graph-neural-network-expressivity0.7799 ± 0.01000.8658 ± 0.0084
robust-deep-auc-maximization-a-new-surrogate0.8352 ± 0.00540.8238 ± 0.0061
molecular-representation-learning-by0.8232 ± 0.00470.8331 ± 0.0054
النموذج 310.8403 ± 0.00210.8176 ± 0.0034
flag-adversarial-data-augmentation-for-graph-10.7654 ± 0.01140.8225 ± 0.0155
improving-graph-neural-network-expressivity0.8039 ± 0.00900.8473 ± 0.0096
النموذج 340.8475 ± 0.00030.8275 ± 0.0008
wasserstein-embedding-for-graph-learning0.7757 ± 0.01110.8101 ± 0.0097
do-transformers-really-perform-bad-for-graph0.8225 ± 0.00010.8396 ± 0.0001
do-transformers-really-perform-bad-for-graph0.8051 ± 0.00530.8310 ± 0.0089
parameterized-hypercomplex-graph-neural0.7934 ± 0.01160.8217 ± 0.0089
adaptive-filters-and-aggregator-fusion-for0.7818 ± 0.01530.8396 ± 0.0097
recipe-for-a-general-powerful-scalable-graph0.78800.8255 ± 0.0092
semi-supervised-classification-with-graph0.7599 ± 0.01190.8384 ± 0.0091
semi-supervised-classification-with-graph0.7606 ± 0.00970.8204 ± 0.0141
a-persistent-weisfeilerlehman-procedure-for0.8039 ± 0.00400.8279 ± 0.0059