Graph Property Prediction On Ogbg Code2
المقاييس
Ext. data
Number of params
Test F1 score
Validation F1 score
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
جدول المقارنة
اسم النموذج | Ext. data | Number of params | Test F1 score | Validation F1 score |
---|---|---|---|---|
semi-supervised-classification-with-graph | No | 11033210 | 0.1507 ± 0.0018 | 0.1399 ± 0.0017 |
graph-attention-networks | No | 11030210 | 0.1569 ± 0.0010 | 0.1442 ± 0.0017 |
adaptive-filters-and-aggregator-fusion-for | No | 10986002 | 0.1595 ± 0.0019 | 0.1464 ± 0.0021 |
structure-aware-transformer-for-graph | No | 15734000 | 0.1937 ± 0.0028 | 0.1773 ± 0.0023 |
النموذج 5 | No | 35246814 | 0.1751 ± 0.0049 | 0.1607 ± 0.0040 |
النموذج 6 | No | 63684290 | 0.1770 ± 0.0012 | 0.1631 ± 0.0090 |
adaptive-filters-and-aggregator-fusion-for | No | 10971506 | 0.1552 ± 0.0022 | 0.1441 ± 0.0016 |
recipe-for-a-general-powerful-scalable-graph | No | 12454066 | 0.1894 | 0.1739 ± 0.001 |
hierarchical-graph-representation-learning | No | 10095826 | 0.1401 ± 0.0012 | 0.1405 ± 0.0012 |
transformers-meet-directed-graphs | No | 14378069 | 0.2222 ± 0.0010 | 0.2044 ± 0.0020 |
النموذج 11 | No | 9053246 | 0.1830 ± 0.0024 | 0.1661 ± 0.0012 |
adaptive-filters-and-aggregator-fusion-for | No | 10992050 | 0.1570 ± 0.0032 | 0.1453 ± 0.0025 |
how-powerful-are-graph-neural-networks | No | 13841815 | 0.1581 ± 0.0026 | 0.1439 ± 0.0020 |
النموذج 14 | No | 14378069 | 0.2222 ± 0.0032 | 0.2044 ± 0.0020 |
how-powerful-are-graph-neural-networks | No | 12390715 | 0.1495 ± 0.0023 | 0.1376 ± 0.0016 |
adaptive-filters-and-aggregator-fusion-for | No | 11156530 | 0.1528 ± 0.0025 | 0.1427 ± 0.0020 |
النموذج 17 | No | 14952882 | 0.2018 ± 0.0021 | 0.1846 ± 0.0010 |
النموذج 18 | No | 7563746 | 0.1751 ± 0.0015 | 0.1599 ± 0.0009 |
semi-supervised-classification-with-graph | No | 12484310 | 0.1595 ± 0.0018 | 0.1461 ± 0.0013 |
directed-acyclic-graph-neural-networks-1 | - | - | 0.1751 ± 0.0049 | 0.1607 ± 0.0040 |
unlocking-the-potential-of-classic-gnns-for | - | - | 0.1896 ± 0.0024 | 0.1742 ± 0.0027 |