Graph Clustering On Cora
المقاييس
ACC
ARI
F1
NMI
Precision
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
| Paper Title | ||||||
|---|---|---|---|---|---|---|
| R-GMM-VGAE | 76.7 | 57.9 | - | 57.3 | - | Rethinking Graph Auto-Encoder Models for Attributed Graph Clustering |
| R-DGAE | 73.7 | 54.1 | - | 56.0 | - | Rethinking Graph Auto-Encoder Models for Attributed Graph Clustering |
| AGC | 68.92 | - | - | 53.68 | - | Attributed Graph Clustering via Adaptive Graph Convolution |
| RWR-VGAE | 68.5 | - | - | 45.5 | - | RWR-GAE: Random Walk Regularization for Graph Auto Encoders |
| RWR-GAE | 66.9 | - | - | 48.1 | - | RWR-GAE: Random Walk Regularization for Graph Auto Encoders |
| ARGE | 64 | 35.2 | 61.9 | 0.449 | 64.6 | Adversarially Regularized Graph Autoencoder for Graph Embedding |
| ARVGE | 63.8 | 37.4 | 62.7 | 45 | 62.4 | Adversarially Regularized Graph Autoencoder for Graph Embedding |
| GAE | 59.6 | - | - | - | - | Variational Graph Auto-Encoders |
| DAEGC+GSCAN† | - | 49.6 | 71.7 | 52.4 | - | GSCAN: Graph Stability Clustering for Applications With Noise Using Edge-Aware Excess-of-Mass |
0 of 9 row(s) selected.