HyperAI
HyperAI
الرئيسية
الأخبار
أحدث الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
العربية
HyperAI
HyperAI
Toggle sidebar
البحث في الموقع...
⌘
K
الرئيسية
SOTA
تصنيف الرسم البياني
Graph Classification On Ptc
Graph Classification On Ptc
المقاييس
Accuracy
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
Accuracy
Paper Title
Repository
U2GNN (Unsupervised)
91.81%
Universal Graph Transformer Self-Attention Networks
-
U2GNN
69.63%
Universal Graph Transformer Self-Attention Networks
-
δ-2-LWL
62.70%
Weisfeiler and Leman go sparse: Towards scalable higher-order graph embeddings
-
DGA
71.24%
Discriminative Graph Autoencoder
-
WWL
66.31%
Wasserstein Weisfeiler-Lehman Graph Kernels
-
DGCNN
65.43%
DGCNN: Disordered Graph Convolutional Neural Network Based on the Gaussian Mixture Model
-
Deep WL SGN(0,1,2)
65.88%
Subgraph Networks with Application to Structural Feature Space Expansion
-
TFGW ADJ (L=2)
72.4%
Template based Graph Neural Network with Optimal Transport Distances
-
DDGK
63.14%
DDGK: Learning Graph Representations for Deep Divergence Graph Kernels
-
DUGNN
74.7%
Learning Universal Graph Neural Network Embeddings With Aid Of Transfer Learning
-
UGraphEmb
72.54%
Unsupervised Inductive Graph-Level Representation Learning via Graph-Graph Proximity
-
Spec-GN
68.05%
A New Perspective on the Effects of Spectrum in Graph Neural Networks
-
SPI-GCN
56.41%
SPI-GCN: A Simple Permutation-Invariant Graph Convolutional Network
-
SF + RFC
62.8%
A Simple Baseline Algorithm for Graph Classification
-
TREE-G
59.1%
TREE-G: Decision Trees Contesting Graph Neural Networks
-
GIUNet
85.7%
Graph isomorphism UNet
cGANet
63.53%
Graph Representation Learning via Hard and Channel-Wise Attention Networks
-
graph2vec
60.17% ± 6.86%
graph2vec: Learning Distributed Representations of Graphs
-
CAN
72.8%
Cell Attention Networks
-
CIN++
73.2%
CIN++: Enhancing Topological Message Passing
-
0 of 37 row(s) selected.
Previous
Next
Graph Classification On Ptc | SOTA | HyperAI