HyperAI
HyperAI
الرئيسية
المنصة
الوثائق
الأخبار
الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
شروط الخدمة
سياسة الخصوصية
العربية
HyperAI
HyperAI
Toggle Sidebar
البحث في الموقع...
⌘
K
Command Palette
Search for a command to run...
المنصة
الرئيسية
SOTA
تصنيف الرسم البياني
Graph Classification On Proteins
Graph Classification On Proteins
المقاييس
Accuracy
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
Accuracy
Paper Title
HGP-SL
84.91
Hierarchical Graph Pooling with Structure Learning
rLap (unsupervised)
84.3
Randomized Schur Complement Views for Graph Contrastive Learning
TFGW ADJ (L=2)
82.9
Template based Graph Neural Network with Optimal Transport Distances
ESA (Edge set attention, no positional encodings)
82.679±0.799
An end-to-end attention-based approach for learning on graphs
DUGNN
81.70%
Learning Universal Graph Neural Network Embeddings With Aid Of Transfer Learning
MEWISPool
80.71%
Maximum Entropy Weighted Independent Set Pooling for Graph Neural Networks
CIN++
80.5
CIN++: Enhancing Topological Message Passing
SAEPool
80.36%
Relational Reasoning Over Spatial-Temporal Graphs for Video Summarization
UGT
80.12 ±0.32
Transitivity-Preserving Graph Representation Learning for Bridging Local Connectivity and Role-based Similarity
U2GNN (Unsupervised)
80.01%
Universal Graph Transformer Self-Attention Networks
sGIN
78.97%
Mutual Information Maximization in Graph Neural Networks
QS-CNNs (Quantum Walk)
78.80%
Quantum-based subgraph convolutional neural networks
WKPI-kmeans
78.8%
Learning metrics for persistence-based summaries and applications for graph classification
PIN
78.8%
Weisfeiler and Lehman Go Paths: Learning Topological Features via Path Complexes
hGANet
78.65%
Graph Representation Learning via Hard and Channel-Wise Attention Networks
U2GNN
78.53%
Universal Graph Transformer Self-Attention Networks
DS-CNNs (Random Walk)
78.35%
Quantum-based subgraph convolutional neural networks
cGANet
78.23%
Graph Representation Learning via Hard and Channel-Wise Attention Networks
CAN
78.2%
Cell Attention Networks
GANet
77.92%
Graph Representation Learning via Hard and Channel-Wise Attention Networks
0 of 99 row(s) selected.
Previous
Next
Graph Classification On Proteins | SOTA | HyperAI