HyperAI
HyperAI
الرئيسية
الأخبار
الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
العربية
HyperAI
HyperAI
Toggle sidebar
البحث في الموقع...
⌘
K
البحث في الموقع...
⌘
K
الرئيسية
SOTA
تصنيف الرسم البياني
Graph Classification On Proteins
Graph Classification On Proteins
المقاييس
Accuracy
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
Accuracy
Paper Title
Repository
R-GCN + PANDA
76
PANDA: Expanded Width-Aware Message Passing Beyond Rewiring
GIN
75.536±1.851
How Powerful are Graph Neural Networks?
Multigraph ChebNet
76.5%
Spectral Multigraph Networks for Discovering and Fusing Relationships in Molecules
ApproxRepSet
70.74%
Rep the Set: Neural Networks for Learning Set Representations
EigenGCN-3
76.60%
Graph Convolutional Networks with EigenPooling
Shortest-Path Kernel
76.4%
Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks
WEGL
76.5%
Wasserstein Embedding for Graph Learning
GIC
77.65%
Gaussian-Induced Convolution for Graphs
-
2-WL-GNN
76.5
A Novel Higher-order Weisfeiler-Lehman Graph Convolution
1-NMFPool
72.1%
A Non-Negative Factorization approach to node pooling in Graph Convolutional Neural Networks
-
SPI-GCN
72.06%
SPI-GCN: A Simple Permutation-Invariant Graph Convolutional Network
-
GraphGPS
77.143±1.494
Recipe for a General, Powerful, Scalable Graph Transformer
FGW sp
74.55%
Optimal Transport for structured data with application on graphs
GIN-0
76,2%
How Powerful are Graph Neural Networks?
GCAPS-CNN
76.40%
Graph Capsule Convolutional Neural Networks
DiffWire
74.91%
DiffWire: Inductive Graph Rewiring via the Lovász Bound
GANet
77.92%
Graph Representation Learning via Hard and Channel-Wise Attention Networks
GDL-g (SP)
74.86
Online Graph Dictionary Learning
GNN (DiffPool)
76.25%
Hierarchical Graph Representation Learning with Differentiable Pooling
PPGN
77.20%
Provably Powerful Graph Networks
0 of 99 row(s) selected.
Previous
Next