HyperAI
الرئيسية
الأخبار
أحدث الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
العربية
النظام
HyperAI
Toggle sidebar
البحث في الموقع...
⌘
K
تسجيل الدخول
تسجيل الدخول
الرئيسية
SOTA
Graph Classification
Graph Classification On Imdb B
Graph Classification On Imdb B
المقاييس
Accuracy
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
Accuracy
Paper Title
Repository
GMT
73.48%
Accurate Learning of Graph Representations with Graph Multiset Pooling
DropGIN
75.7%
DropGNN: Random Dropouts Increase the Expressiveness of Graph Neural Networks
G-Tuning
-
Fine-tuning Graph Neural Networks by Preserving Graph Generative Patterns
k-GNN
74.2%
Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks
ESA (Edge set attention, no positional encodings)
86.250±0.957
An end-to-end attention-based approach for learning on graphs
-
Deep WL SGN(0,1,2)
75.70%
Subgraph Networks with Application to Structural Feature Space Expansion
-
TokenGT
80.250±3.304
Pure Transformers are Powerful Graph Learners
GIUNet
76%
Graph isomorphism UNet
WKPI-kcenters
75.4%
Learning metrics for persistence-based summaries and applications for graph classification
DGK
66.96%
Deep Graph Kernels
-
GIN-0
75.1%
How Powerful are Graph Neural Networks?
GraphGPS
79.250±3.096
Recipe for a General, Powerful, Scalable Graph Transformer
SEG-BERT
77.2%
Segmented Graph-Bert for Graph Instance Modeling
U2GNN
77.04%
Universal Graph Transformer Self-Attention Networks
G_ResNet
79.90%
When Work Matters: Transforming Classical Network Structures to Graph CNN
-
PPGN
72.6%
Provably Powerful Graph Networks
GCAPS-CNN
71.69%
Graph Capsule Convolutional Neural Networks
AWE
74.45%
Anonymous Walk Embeddings
GraphSAGE
68.8%
A Fair Comparison of Graph Neural Networks for Graph Classification
DGCNN (sum)
51.69%
An End-to-End Deep Learning Architecture for Graph Classification
0 of 50 row(s) selected.
Previous
Next