HyperAI
HyperAI
الرئيسية
الأخبار
أحدث الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
العربية
HyperAI
HyperAI
Toggle sidebar
البحث في الموقع...
⌘
K
الرئيسية
SOTA
تصنيف الرسم البياني
Graph Classification On Cifar10 100K
Graph Classification On Cifar10 100K
المقاييس
Accuracy (%)
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
Accuracy (%)
Paper Title
Repository
GAT
65.48
Graph Attention Networks
-
GRIT
76.468
Graph Inductive Biases in Transformers without Message Passing
-
GRED
76.853±0.185
Recurrent Distance Filtering for Graph Representation Learning
-
PNA
70.47
Principal Neighbourhood Aggregation for Graph Nets
-
Exphormer
74.754±0.194
Exphormer: Sparse Transformers for Graphs
-
ESA (Edge set attention, no positional encodings)
75.413±0.248
An end-to-end attention-based approach for learning on graphs
-
GraphSage
66.08
Inductive Representation Learning on Large Graphs
-
EGT
68.702
Global Self-Attention as a Replacement for Graph Convolution
-
MoNet
53.42
Geometric deep learning on graphs and manifolds using mixture model CNNs
-
GatedGCN
67.312
Benchmarking Graph Neural Networks
-
GraphGPS + HDSE
76.180±0.277
Enhancing Graph Transformers with Hierarchical Distance Structural Encoding
-
EIGENFORMER
70.194
Graph Transformers without Positional Encodings
-
ARGNP
73.90
Automatic Relation-aware Graph Network Proliferation
-
GIN
53.28
How Powerful are Graph Neural Networks?
-
GatedGCN+
77.218 ± 0.381
Can Classic GNNs Be Strong Baselines for Graph-level Tasks? Simple Architectures Meet Excellence
-
TIGT
73.955
Topology-Informed Graph Transformer
-
NeuralWalker
80.027 ± 0.185
Learning Long Range Dependencies on Graphs via Random Walks
-
GatedGCN
69.37
Residual Gated Graph ConvNets
-
GPS
72.298
Recipe for a General, Powerful, Scalable Graph Transformer
-
DGN
72.84
Directional Graph Networks
-
0 of 20 row(s) selected.
Previous
Next
Graph Classification On Cifar10 100K | SOTA | HyperAI