HyperAI
HyperAI
الرئيسية
المنصة
الوثائق
الأخبار
الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
شروط الخدمة
سياسة الخصوصية
العربية
HyperAI
HyperAI
Toggle Sidebar
البحث في الموقع...
⌘
K
Command Palette
Search for a command to run...
المنصة
الرئيسية
SOTA
طاقة التكوين
Formation Energy On Qm9
Formation Energy On Qm9
المقاييس
MAE
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
MAE
Paper Title
HDAD+KRR
0.58
Machine learning prediction errors better than DFT accuracy
MPNN
0.49
Neural Message Passing for Quantum Chemistry
SchNet
0.314
Neural Message Passing with Edge Updates for Predicting Properties of Molecules and Materials
ALIGNN
0.30
Atomistic Line Graph Neural Network for Improved Materials Property Predictions
MEGNet-simple
0.28
Graph Networks as a Universal Machine Learning Framework for Molecules and Crystals
HIP-NN
0.256
Hierarchical modeling of molecular energies using a deep neural network
SchNet-edge-update
0.242
Neural Message Passing with Edge Updates for Predicting Properties of Molecules and Materials
MEGNet-Full
0.21
Graph Networks as a Universal Machine Learning Framework for Molecules and Crystals
PhysNet
0.19
PhysNet: A Neural Network for Predicting Energies, Forces, Dipole Moments and Partial Charges
DimeNet
0.185
Directional Message Passing for Molecular Graphs
xGPR -- Gaussian process, graph convolution kernel
0.167
Linear-scaling kernels for protein sequences and small molecules outperform deep learning while providing uncertainty quantitation and improved interpretability
DeepMoleNet
0.141
Transferable Multi-level Attention Neural Network for Accurate Prediction of Quantum Chemistry Properties via Multi-task Learning
PhysNet-ens5
0.14
PhysNet: A Neural Network for Predicting Energies, Forces, Dipole Moments and Partial Charges
HMGNN
0.138
Heterogeneous Molecular Graph Neural Networks for Predicting Molecule Properties
MXMNet
0.137
Molecular Mechanics-Driven Graph Neural Network with Multiplex Graph for Molecular Structures
PAMNet
0.136
A Universal Framework for Accurate and Efficient Geometric Deep Learning of Molecular Systems
Wigner Kernels
0.100 ± 0.003
Wigner kernels: body-ordered equivariant machine learning without a basis
TensorNet
0.09
TensorNet: Cartesian Tensor Representations for Efficient Learning of Molecular Potentials
0 of 18 row(s) selected.
Previous
Next