HyperAI
الرئيسية
الأخبار
أحدث الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
العربية
HyperAI
Toggle sidebar
البحث في الموقع...
⌘
K
الرئيسية
SOTA
Formation Energy
Formation Energy On Qm9
Formation Energy On Qm9
المقاييس
MAE
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
MAE
Paper Title
Repository
PhysNet
0.19
PhysNet: A Neural Network for Predicting Energies, Forces, Dipole Moments and Partial Charges
TensorNet
0.09
TensorNet: Cartesian Tensor Representations for Efficient Learning of Molecular Potentials
-
SchNet
0.314
Neural Message Passing with Edge Updates for Predicting Properties of Molecules and Materials
HIP-NN
0.256
Hierarchical modeling of molecular energies using a deep neural network
-
Wigner Kernels
0.100 ± 0.003
Wigner kernels: body-ordered equivariant machine learning without a basis
-
PAMNet
0.136
A Universal Framework for Accurate and Efficient Geometric Deep Learning of Molecular Systems
MXMNet
0.137
Molecular Mechanics-Driven Graph Neural Network with Multiplex Graph for Molecular Structures
MEGNet-Full
0.21
Graph Networks as a Universal Machine Learning Framework for Molecules and Crystals
HMGNN
0.138
Heterogeneous Molecular Graph Neural Networks for Predicting Molecule Properties
ALIGNN
0.30
Atomistic Line Graph Neural Network for Improved Materials Property Predictions
DimeNet
0.185
Directional Message Passing for Molecular Graphs
SchNet-edge-update
0.242
Neural Message Passing with Edge Updates for Predicting Properties of Molecules and Materials
MPNN
0.49
Neural Message Passing for Quantum Chemistry
HDAD+KRR
0.58
Machine learning prediction errors better than DFT accuracy
-
DeepMoleNet
0.141
Transferable Multi-level Attention Neural Network for Accurate Prediction of Quantum Chemistry Properties via Multi-task Learning
-
MEGNet-simple
0.28
Graph Networks as a Universal Machine Learning Framework for Molecules and Crystals
PhysNet-ens5
0.14
PhysNet: A Neural Network for Predicting Energies, Forces, Dipole Moments and Partial Charges
xGPR -- Gaussian process, graph convolution kernel
0.167
Linear-scaling kernels for protein sequences and small molecules outperform deep learning while providing uncertainty quantitation and improved interpretability
0 of 18 row(s) selected.
Previous
Next