HyperAI

Fine Grained Image Classification On Stanford 1

المقاييس

Accuracy

النتائج

نتائج أداء النماذج المختلفة على هذا المعيار القياسي

جدول المقارنة
اسم النموذجAccuracy
2003-1354961.2%
advisingnets-learning-to-distinguish-correct86.31%
a-continual-development-methodology-for-large93.5%
transfg-a-transformer-architecture-for-fine92.3% (90.6%)
understanding-gaussian-attention-bias-of90.185%
fine-grained-visual-classification-via-291.8%
sim-ofe-structure-information-mining-and93.3%
fine-grained-visual-classification-using-self93.1%
vit-net-interpretable-vision-transformers93.6%
fine-grained-recognition-accounting-for87.7%
learning-attentive-pairwise-interaction-for90.3%
multi-granularity-part-sampling-attention-for95.4%
on-the-eigenvalues-of-global-covariance93.0%
rams-trans-recurrent-attention-multi-scale92.4%
a-free-lunch-from-vit-adaptive-attention91.6%
pairwise-confusion-for-fine-grained-visual83.75%
domain-adaptive-transfer-learning-on-visual90%
feature-fusion-vision-transformer-fine91.5%
an-attention-locating-algorithm-for91.1%
transformer-with-peak-suppression-and92.5%
delving-into-multimodal-prompting-for-fine91.0%
sr-gnn-spatial-relation-aware-graph-neural97.3%
learning-semantically-enhanced-feature-for88.8%