HyperAI
الرئيسية
الأخبار
أحدث الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
العربية
النظام
HyperAI
Toggle sidebar
البحث في الموقع...
⌘
K
تسجيل الدخول
تسجيل الدخول
الرئيسية
SOTA
Fine Grained Image Classification
Fine Grained Image Classification On Stanford 1
Fine Grained Image Classification On Stanford 1
المقاييس
Accuracy
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
Accuracy
Paper Title
Repository
EfficientNet-B0 (BSConv-S)
61.2%
Rethinking Depthwise Separable Convolutions: How Intra-Kernel Correlations Lead to Improved MobileNets
ResNet-50
86.31%
PCNN: Probable-Class Nearest-Neighbor Explanations Improve Fine-Grained Image Classification Accuracy for AIs and Humans
µ2Net+ (ViT-L/16)
93.5%
A Continual Development Methodology for Large-scale Multitask Dynamic ML Systems
TransFG
92.3% (90.6%)
TransFG: A Transformer Architecture for Fine-grained Recognition
ViT-B/16 (RPE w/ GAB)
90.185%
Understanding Gaussian Attention Bias of Vision Transformers Using Effective Receptive Fields
IELT
91.8%
Fine-Grained Visual Classification via Internal Ensemble Learning Transformer
SIM-OFE
93.3%
SIM-OFE: Structure Information Mining and Object-aware Feature Enhancement for Fine-Grained Visual Categorization
-
WS_DAN-SAC
93.1%
Fine-Grained Visual Classification using Self Assessment Classifier
ViT-NeT (DeiT-III-B)
93.6%
ViT-NeT: Interpretable Vision Transformers with Neural Tree Decoder
DB
87.7%
Fine-grained Recognition: Accounting for Subtle Differences between Similar Classes
-
API-Net
90.3%
Learning Attentive Pairwise Interaction for Fine-Grained Classification
MPSA
95.4%
Multi-Granularity Part Sampling Attention for Fine-Grained Visual Classification
SEB+EfficientNet-B5
93.0%
On the Eigenvalues of Global Covariance Pooling for Fine-grained Visual Recognition
RAMS-Trans
92.4%
RAMS-Trans: Recurrent Attention Multi-scale Transformer forFine-grained Image Recognition
-
AFTrans
91.6%
A free lunch from ViT:Adaptive Attention Multi-scale Fusion Transformer for Fine-grained Visual Recognition
-
PC-DenseNet-161
83.75%
Pairwise Confusion for Fine-Grained Visual Classification
ImageNet + iNat on WS-DAN
90%
Domain Adaptive Transfer Learning on Visual Attention Aware Data Augmentation for Fine-grained Visual Categorization
-
FFVT
91.5%
Feature Fusion Vision Transformer for Fine-Grained Visual Categorization
FAL-ViT
91.1%
An Attention-Locating Algorithm for Eliminating Background Effects in Fine-grained Visual Classification
TPSKG
92.5%
Transformer with Peak Suppression and Knowledge Guidance for Fine-grained Image Recognition
-
0 of 23 row(s) selected.
Previous
Next