HyperAI
HyperAI
الرئيسية
المنصة
الوثائق
الأخبار
الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
شروط الخدمة
سياسة الخصوصية
العربية
HyperAI
HyperAI
Toggle Sidebar
البحث في الموقع...
⌘
K
Command Palette
Search for a command to run...
المنصة
الرئيسية
SOTA
تصنيف الصور الدقيق
Fine Grained Image Classification On Oxford
Fine Grained Image Classification On Oxford
المقاييس
Accuracy
FLOPS
PARAMS
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
Accuracy
FLOPS
PARAMS
Paper Title
IELT
99.64%
-
-
Fine-Grained Visual Classification via Internal Ensemble Learning Transformer
BiT-L (ResNet)
99.63%
-
-
Big Transfer (BiT): General Visual Representation Learning
µ2Net (ViT-L/16)
99.61%
-
-
An Evolutionary Approach to Dynamic Introduction of Tasks in Large-scale Multitask Learning Systems
Wide-ResNet-101 (Spinal FC)
99.30%
-
-
SpinalNet: Deep Neural Network with Gradual Input
BiT-M (ResNet)
99.30%
-
-
Big Transfer (BiT): General Visual Representation Learning
Grafit (RegNet-8GF)
99.1%
-
-
Grafit: Learning fine-grained image representations with coarse labels
TResNet-L
99.1%
-
-
TResNet: High Performance GPU-Dedicated Architecture
TNT-B
99.0%
-
65.6M
Transformer in Transformer
Assemble-ResNet
98.9%
-
-
Compounding the Performance Improvements of Assembled Techniques in a Convolutional Neural Network
DeiT-B
98.8%
-
86M
Training data-efficient image transformers & distillation through attention
DenseNet-201(Spinal FC)
98.36
-
-
A Comprehensive Study on Torchvision Pre-trained Models for Fine-grained Inter-species Classification
NAT-M4
98.3
400M
4.2M
Neural Architecture Transfer
DenseNet-201
98.29
-
-
A Comprehensive Study on Torchvision Pre-trained Models for Fine-grained Inter-species Classification
NAT-M3
98.1
250M
3.7M
Neural Architecture Transfer
ResNet50 (A1)
97.9%
4.1
24M
ResNet strikes back: An improved training procedure in timm
ResMLP-24
97.9%
-
-
ResMLP: Feedforward networks for image classification with data-efficient training
NAT-M2
97.9
195M
3.4M
Neural Architecture Transfer
SR-GNN
97.9%
9.8
30.9
SR-GNN: Spatial Relation-aware Graph Neural Network for Fine-Grained Image Categorization
ResMLP-12
97.4%
-
-
ResMLP: Feedforward networks for image classification with data-efficient training
FixInceptionResNet-V2
95.7%
-
-
Fixing the train-test resolution discrepancy
0 of 25 row(s) selected.
Previous
Next
Fine Grained Image Classification On Oxford | SOTA | HyperAI