HyperAI
HyperAI
الرئيسية
المنصة
الوثائق
الأخبار
الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
شروط الخدمة
سياسة الخصوصية
العربية
HyperAI
HyperAI
Toggle Sidebar
البحث في الموقع...
⌘
K
Command Palette
Search for a command to run...
المنصة
الرئيسية
SOTA
تصنيف الصور الدقيق
Fine Grained Image Classification On Caltech
Fine Grained Image Classification On Caltech
المقاييس
Top-1 Error Rate
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
Top-1 Error Rate
Paper Title
ResNet-101 (ideal number of groups)
22.247%
On the Ideal Number of Groups for Isometric Gradient Propagation
SE-ResNet-101 (SAP)
15.949%
Stochastic Subsampling With Average Pooling
PreResNet-101
15.8036%
How to Use Dropout Correctly on Residual Networks with Batch Normalization
AutoAugment
13.07%
AutoAugment: Learning Augmentation Policies from Data
ViT-S/16 (RPE w/ GAB)
9.798%
Understanding Gaussian Attention Bias of Vision Transformers Using Effective Receptive Fields
SEER (RegNet10B - linear eval)
9.0%
Vision Models Are More Robust And Fair When Pretrained On Uncurated Images Without Supervision
NNCLR
8.7%
With a Little Help from My Friends: Nearest-Neighbor Contrastive Learning of Visual Representations
µ2Net (ViT-L/16)
7%
An Evolutionary Approach to Dynamic Introduction of Tasks in Large-scale Multitask Learning Systems
VGG-19bn (Spinal FC)
6.84%
SpinalNet: Deep Neural Network with Gradual Input
TWIST (ResNet-50 )
6.5%
Self-Supervised Learning by Estimating Twin Class Distributions
ResNeXt-101-32x8d
4.42%
Dead Pixel Test Using Effective Receptive Field
µ2Net+ (ViT-L/16)
4.06%
A Continual Development Methodology for Large-scale Multitask Dynamic ML Systems
Wide-ResNet-101
2.89%
SpinalNet: Deep Neural Network with Gradual Input
Wide-ResNet-101 (Spinal FC)
2.68%
SpinalNet: Deep Neural Network with Gradual Input
VIT-L/16
1.98%
Reduction of Class Activation Uncertainty with Background Information
Bamboo (ViT-B/16)
-
Bamboo: Building Mega-Scale Vision Dataset Continually with Human-Machine Synergy
Pre trained wide-resnet-101
-
ProgressiveSpinalNet architecture for FC layers
UL-Hopfield (ULH)
-
Unsupervised Learning using Pretrained CNN and Associative Memory Bank
0 of 18 row(s) selected.
Previous
Next
Fine Grained Image Classification On Caltech | SOTA | HyperAI