HyperAI
HyperAI
الرئيسية
المنصة
الوثائق
الأخبار
الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
شروط الخدمة
سياسة الخصوصية
العربية
HyperAI
HyperAI
Toggle Sidebar
البحث في الموقع...
⌘
K
Command Palette
Search for a command to run...
المنصة
الرئيسية
SOTA
الملخصة التوثيقية
Document Summarization On Cnn Daily Mail
Document Summarization On Cnn Daily Mail
المقاييس
PPL
ROUGE-1
ROUGE-2
ROUGE-L
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
PPL
ROUGE-1
ROUGE-2
ROUGE-L
Paper Title
Scrambled code + broken (alter)
-
48.18
19.84
45.35
Universal Evasion Attacks on Summarization Scoring
PEGASUS + SummaReranker
-
47.16
22.55
43.87
SummaReranker: A Multi-Task Mixture-of-Experts Re-ranking Framework for Abstractive Summarization
Fourier Transformer
-
44.76
21.55
41.34
Fourier Transformer: Fast Long Range Modeling by Removing Sequence Redundancy with FFT Operator
GLM-XXLarge
-
44.7
21.4
41.4
GLM: General Language Model Pretraining with Autoregressive Blank Infilling
HAT-BART
-
44.48
21.31
41.52
Hierarchical Learning for Generation with Long Source Sequences
MatchSum (RoBERTa-base)
-
44.41
20.86
40.55
Extractive Summarization as Text Matching
Hie-BART
-
44.35
21.37
41.05
Hie-BART: Document Summarization with Hierarchical BART
MatchSum (BERT-base)
-
44.22
20.62
40.38
Extractive Summarization as Text Matching
BertSumExt
-
43.85
20.34
39.9
Text Summarization with Pretrained Encoders
BigBird-Pegasus
-
43.84
21.11
40.74
Big Bird: Transformers for Longer Sequences
T5-11B
-
43.52
21.55
40.69
Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer
BERTSUM+Transformer
-
43.25
20.24
39.63
Fine-tune BERT for Extractive Summarization
UniLM (Abstractive Summarization)
-
43.08
20.43
40.34
Unified Language Model Pre-training for Natural Language Understanding and Generation
Selector+Pointer Generator
-
41.72
18.74
38.79
Mixture Content Selection for Diverse Sequence Generation
NeuSUM
-
41.59
19.01
37.98
Neural Document Summarization by Jointly Learning to Score and Select Sentences
Bottom-Up Sum
32.75
41.22
18.68
38.34
Bottom-Up Abstractive Summarization
TaLK Convolutions (Deep)
-
40.59
18.97
36.81
Time-aware Large Kernel Convolutions
Lead-3
-
40.34
17.70
36.57
Get To The Point: Summarization with Pointer-Generator Networks
TaLK Convolutions (Standard)
-
40.03
18.45
36.13
Time-aware Large Kernel Convolutions
ML + RL (Paulus et al., 2017)
-
39.87
15.82
36.90
A Deep Reinforced Model for Abstractive Summarization
0 of 26 row(s) selected.
Previous
Next
Document Summarization On Cnn Daily Mail | SOTA | HyperAI