HyperAI
HyperAI
الرئيسية
المنصة
الوثائق
الأخبار
الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
شروط الخدمة
سياسة الخصوصية
العربية
HyperAI
HyperAI
Toggle Sidebar
البحث في الموقع...
⌘
K
Command Palette
Search for a command to run...
المنصة
الرئيسية
SOTA
التمييز الثنائي للفصل الصوري
Dichotomous Image Segmentation On Dis Te2
Dichotomous Image Segmentation On Dis Te2
المقاييس
E-measure
HCE
MAE
S-Measure
max F-Measure
weighted F-measure
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
E-measure
HCE
MAE
S-Measure
max F-Measure
weighted F-measure
Paper Title
PDFNet
0.947
-
0.028
0.924
0.921
0.885
Patch-Depth Fusion: Dichotomous Image Segmentation via Fine-Grained Patch Strategy and Depth Integrity-Prior
MVANet
0.944
251
0.030
0.915
0.916
0.874
Multi-view Aggregation Network for Dichotomous Image Segmentation
InSPyReNet (HR scale)
-
255
-
0.905
0.894
-
Revisiting Image Pyramid Structure for High Resolution Salient Object Detection
BiRefNet
0.935
265
0.035
0.904
0.898
0.863
Bilateral Reference for High-Resolution Dichotomous Image Segmentation
InSPyReNet
0.925
316
0.038
0.893
0.881
0.834
Revisiting Image Pyramid Structure for High Resolution Salient Object Detection
IS-Net
0.858
340
0.07
0.823
0.799
0.728
Highly Accurate Dichotomous Image Segmentation
HySM
0.832
451
0.085
0.794
0.759
0.667
HyperSeg: Patch-wise Hypernetwork for Real-time Semantic Segmentation
U2Net
0.833
490
0.085
0.788
0.756
0.668
U$^2$-Net: Going Deeper with Nested U-Structure for Salient Object Detection
BASNet
0.836
480
0.084
0.786
0.755
0.668
BASNet: Boundary-Aware Salient Object Detection
HRNet
0.840
555
0.087
0.784
0.747
0.664
Deep High-Resolution Representation Learning for Visual Recognition
MBV3
0.856
600
0.083
0.777
0.743
0.672
Searching for MobileNetV3
PSPNet
0.828
586
0.092
0.763
0.724
0.636
Pyramid Scene Parsing Network
PFNet
0.829
567
0.096
0.761
0.720
0.633
Camouflaged Object Segmentation with Distraction Mining
ICNet
0.826
512
0.095
0.759
0.716
0.627
ICNet for Real-Time Semantic Segmentation on High-Resolution Images
STDC
0.834
556
0.092
0.759
0.720
0.636
Rethinking BiSeNet For Real-time Semantic Segmentation
F3Net
0.820
542
0.097
0.755
0.712
0.620
F3Net: Fusion, Feedback and Focus for Salient Object Detection
UNet
-
474
0.107
0.755
0.703
0.597
U-Net: Convolutional Networks for Biomedical Image Segmentation
SINetV2
0.823
593
0.099
0.753
0.700
0.618
Concealed Object Detection
BSV1
0.781
621
0.111
0.740
0.680
0.564
BiSeNet: Bilateral Segmentation Network for Real-time Semantic Segmentation
GateNet
0.804
501
0.102
0.737
0.702
0.598
Suppress and Balance: A Simple Gated Network for Salient Object Detection
0 of 22 row(s) selected.
Previous
Next