HyperAIHyperAI

Complex Query Answering On Fb15K 237

المقاييس

MRR 1p
MRR 2i
MRR 2p
MRR 2u
MRR 3i
MRR 3p
MRR ip
MRR pi
MRR up

النتائج

نتائج أداء النماذج المختلفة على هذا المعيار القياسي

اسم النموذج
MRR 1p
MRR 2i
MRR 2p
MRR 2u
MRR 3i
MRR 3p
MRR ip
MRR pi
MRR up
Paper TitleRepository
Q2B0.4060.2950.0940.1130.4230.0680.1260.2120.076Query2box: Reasoning over Knowledge Graphs in Vector Space using Box Embeddings-
QTO0.4900.4310.2140.2270.5680.2120.2800.3810.214Answering Complex Logical Queries on Knowledge Graphs via Query Computation Tree Optimization-
GNN-QE0.4280.3830.1470.1620.5410.1180.1890.3110.134Neural-Symbolic Models for Logical Queries on Knowledge Graphs-
BetaE0.390.2880.1090.1240.4250.10.1260.2240.097Beta Embeddings for Multi-Hop Logical Reasoning in Knowledge Graphs-
GQE0.350.2330.0720.0820.3460.0530.1070.1650.057Embedding Logical Queries on Knowledge Graphs-
CQD----0.486----Complex Query Answering with Neural Link Predictors-
CQD-CO---------Complex Query Answering with Neural Link Predictors-
CQD-Beam---------Complex Query Answering with Neural Link Predictors-
CQDA0.4670.3450.1360.1760.4830.1140.2090.2740.114Adapting Neural Link Predictors for Data-Efficient Complex Query Answering-
0 of 9 row(s) selected.
Complex Query Answering On Fb15K 237 | SOTA | HyperAI