HyperAI
HyperAI
الرئيسية
المنصة
الوثائق
الأخبار
الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
شروط الخدمة
سياسة الخصوصية
العربية
HyperAI
HyperAI
Toggle Sidebar
البحث في الموقع...
⌘
K
Command Palette
Search for a command to run...
المنصة
الرئيسية
SOTA
توليد_الكود
Code Generation On Apps
Code Generation On Apps
المقاييس
Competition Pass@1
Interview Pass@1
Introductory Pass@1
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
Competition Pass@1
Interview Pass@1
Introductory Pass@1
Paper Title
LPW (GPT-4o)
34.8
65.2
87.2
Planning-Driven Programming: A Large Language Model Programming Workflow
MoTCoder-32B-V1.5
27.84
44.49
68.44
MoTCoder: Elevating Large Language Models with Modular of Thought for Challenging Programming Tasks
MoTCoder-7B-V1.5
21.18
32.63
54.26
MoTCoder: Elevating Large Language Models with Modular of Thought for Challenging Programming Tasks
code-davinci-002 175B (CodeT)
6.2%
14.3%
47.3%
CodeT: Code Generation with Generated Tests
deepseek-ai/deepseek-coder-6.7b-instruct
11.09
19.70
33.80
DeepSeek-Coder: When the Large Language Model Meets Programming -- The Rise of Code Intelligence
code-davinci-002 175B
-
-
31.92
CodeT: Code Generation with Generated Tests
CodeChain+WizardCoder-15b
2.5%
6.4%
29.3%
CodeChain: Towards Modular Code Generation Through Chain of Self-revisions with Representative Sub-modules
WizardCoder-15b
3.75
7.49
26.29
CodeChain: Towards Modular Code Generation Through Chain of Self-revisions with Representative Sub-modules
CodeSim (GPT4)
0.81
4.21
26.04
CODESIM: Multi-Agent Code Generation and Problem Solving through Simulation-Driven Planning and Debugging
CodeRL+CodeT5
33.3
13.5
20
CodeRL: Mastering Code Generation through Pretrained Models and Deep Reinforcement Learning
GPT-J 6B (Finetuned)
0.69%
1.80%
6.77%
CodeRL: Mastering Code Generation through Pretrained Models and Deep Reinforcement Learning
Codex 12B (Raw)
0.50%
1.00%
5.60%
Evaluating Large Language Models Trained on Code
GPT-Neo 2.7B (Finetuned)
0.02%
0.14%
4.14%
CodeRL: Mastering Code Generation through Pretrained Models and Deep Reinforcement Learning
GPT-Neo 2.7B
0.00%
0.57%
3.90%
Measuring Coding Challenge Competence With APPS
GPT2 1.5B (Finetuned)
0.00%
0.57%
3.90%
CodeRL: Mastering Code Generation through Pretrained Models and Deep Reinforcement Learning
MapCoder APPS-150-cherrypicked (GPT-4)
0.00%
0.70%
1.30%
MapCoder: Multi-Agent Code Generation for Competitive Problem Solving
AlphaCode 1B
-
-
-
Competition-Level Code Generation with AlphaCode
AlphaCode 1B Filtered from 50000
-
-
-
Competition-Level Code Generation with AlphaCode
0 of 18 row(s) selected.
Previous
Next
Code Generation On Apps | SOTA | HyperAI