Click Through Rate Prediction On Movielens
المقاييس
AUC
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
| Paper Title | ||
|---|---|---|
| github.com/guotong1988/movielens_dataset | 0.79 | - |
| DIN + Dice Activation | 0.7348 | Deep Interest Network for Click-Through Rate Prediction |
| DIN | 0.7337 | Deep Interest Network for Click-Through Rate Prediction |
| DeepFM | 0.7324 | DeepFM: A Factorization-Machine based Neural Network for CTR Prediction |
| PNN | 0.7321 | Product-based Neural Networks for User Response Prediction |
| Wide & Deep | 0.7304 | Wide & Deep Learning for Recommender Systems |
0 of 6 row(s) selected.