Atrial Fibrillation Detection On Mit Bih Af
المقاييس
Accuracy
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
اسم النموذج | Accuracy | Paper Title | Repository |
---|---|---|---|
Wavelet transform + 2D CNN | 99.16% | Automatic Detection of Atrial Fibrillation Based on Continuous Wavelet Transform and 2D Convolutional Neural Networks | - |
CNN-BLSTM | 96.59% | A Novel Deep Arrhythmia-Diagnosis Network for Atrial Fibrillation Classification Using Electrocardiogram Signals | - |
Symbolic dynamics and Shannon entropy | 97.57% | Automatic online detection of atrial fibrillation based on symbolic dynamics and Shannon entropy | - |
/spl Delta/RR intervals | 94.95% | A method for detection of atrial fibrillation using RR intervals | - |
ECGNET | 99.40% | ECGNET: Learning where to attend for detection of atrial fibrillation with deep visual attention | - |
Spectrogram + ConvNet | 93.16% | Atrial Fibrillation Detection Using Deep Features and Convolutional Networks | - |
0 of 6 row(s) selected.