HyperAI
HyperAI
الرئيسية
المنصة
الوثائق
الأخبار
الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
شروط الخدمة
سياسة الخصوصية
العربية
HyperAI
HyperAI
Toggle Sidebar
البحث في الموقع...
⌘
K
Command Palette
Search for a command to run...
المنصة
الرئيسية
SOTA
ألعاب أتاري
Atari Games On Atari 2600 Skiing
Atari Games On Atari 2600 Skiing
المقاييس
Score
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
Score
Paper Title
Full Tree
0
The Arcade Learning Environment: An Evaluation Platform for General Agents
Best Learner
0
The Arcade Learning Environment: An Evaluation Platform for General Agents
Go-Explore
-3660
First return, then explore
Agent57
-4202.6
Agent57: Outperforming the Atari Human Benchmark
GDI-H3
-6025
Generalized Data Distribution Iteration
GDI-I3
-6774
Generalized Data Distribution Iteration
GDI-I3
-6774
GDI: Rethinking What Makes Reinforcement Learning Different From Supervised Learning
NoisyNet-Dueling
-7550
Noisy Networks for Exploration
ASL DDQN
-8295.4
Train a Real-world Local Path Planner in One Hour via Partially Decoupled Reinforcement Learning and Vectorized Diversity
CGP
-9011
Evolving simple programs for playing Atari games
FQF
-9085.3
Fully Parameterized Quantile Function for Distributional Reinforcement Learning
IQN
-9289
Implicit Quantile Networks for Distributional Reinforcement Learning
DreamerV2
-9299
Mastering Atari with Discrete World Models
QR-DQN-1
-9324
Distributional Reinforcement Learning with Quantile Regression
IMPALA (deep)
-10180.38
IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures
Ape-X
-10789.9
Distributed Prioritized Experience Replay
Advantage Learning
-13264.51
Increasing the Action Gap: New Operators for Reinforcement Learning
Rational DQN Average
-23487
Adaptive Rational Activations to Boost Deep Reinforcement Learning
Recurrent Rational DQN Average
-23582
Adaptive Rational Activations to Boost Deep Reinforcement Learning
MuZero
-29968.36
Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model
0 of 23 row(s) selected.
Previous
Next