HyperAI
HyperAI
الرئيسية
المنصة
الوثائق
الأخبار
الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
شروط الخدمة
سياسة الخصوصية
العربية
HyperAI
HyperAI
Toggle Sidebar
البحث في الموقع...
⌘
K
Command Palette
Search for a command to run...
المنصة
الرئيسية
SOTA
ألعاب أتاري
Atari Games On Atari 2600 Krull
Atari Games On Atari 2600 Krull
المقاييس
Score
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
Score
Paper Title
GDI-H3
594540
Generalized Data Distribution Iteration
MuZero
269358.27
Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model
Agent57
251997.31
Agent57: Outperforming the Atari Human Benchmark
R2D2
218448.1
Recurrent Experience Replay in Distributed Reinforcement Learning
GDI-I3
97575
GDI: Rethinking What Makes Reinforcement Learning Different From Supervised Learning
GDI-I3
97575
Generalized Data Distribution Iteration
MuZero (Res2 Adam)
72570.5
Online and Offline Reinforcement Learning by Planning with a Learned Model
DreamerV2
50061
Mastering Atari with Discrete World Models
VPN
15930
Value Prediction Network
Ape-X
11741.4
Distributed Prioritized Experience Replay
Duel noop
11451.9
Dueling Network Architectures for Deep Reinforcement Learning
QR-DQN-1
11447
Distributional Reinforcement Learning with Quantile Regression
DNA
10956
DNA: Proximal Policy Optimization with a Dual Network Architecture
NoisyNet-Dueling
10754
Noisy Networks for Exploration
IQN
10707
Implicit Quantile Networks for Distributional Reinforcement Learning
A2C + SIL
10614.6
Self-Imitation Learning
ASL DDQN
10422.5
Train a Real-world Local Path Planner in One Hour via Partially Decoupled Reinforcement Learning and Vectorized Diversity
Prior+Duel noop
10374.4
Dueling Network Architectures for Deep Reinforcement Learning
DDQN+Pop-Art noop
9745.1
Learning values across many orders of magnitude
C51 noop
9735.0
A Distributional Perspective on Reinforcement Learning
0 of 45 row(s) selected.
Previous
Next
Atari Games On Atari 2600 Krull | SOTA | HyperAI