Atari Games On Atari 2600 Ice Hockey
المقاييس
Score
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
جدول المقارنة
اسم النموذج | Score |
---|---|
deep-reinforcement-learning-with-double-q | 0.5 |
impala-scalable-distributed-deep-rl-with | 3.48 |
dna-proximal-policy-optimization-with-a-dual | 7.2 |
human-level-control-through-deep | -1.6 |
noisy-networks-for-exploration | 3 |
deep-reinforcement-learning-with-double-q | -1.6 |
mastering-atari-go-chess-and-shogi-by | 67.04 |
evolving-simple-programs-for-playing-atari | 4 |
implicit-quantile-networks-for-distributional | 0.2 |
generalized-data-distribution-iteration | 44.94 |
a-distributional-perspective-on-reinforcement | -3.5 |
the-arcade-learning-environment-an-evaluation | -9.5 |
mastering-atari-with-discrete-world-models-1 | 26 |
agent57-outperforming-the-atari-human | 63.64 |
self-imitation-learning | -2.4 |
distributional-reinforcement-learning-with-1 | -1.7 |
asynchronous-methods-for-deep-reinforcement | -1.7 |
train-a-real-world-local-path-planner-in-one | -3.6 |
prioritized-experience-replay | -0.2 |
asynchronous-methods-for-deep-reinforcement | -4.7 |
policy-optimization-with-penalized-point | -4.12 |
gdi-rethinking-what-makes-reinforcement | 44.94 |
dueling-network-architectures-for-deep | -2.7 |
generalized-data-distribution-iteration | 481.9 |
evolution-strategies-as-a-scalable | -4.1 |
asynchronous-methods-for-deep-reinforcement | -2.8 |
massively-parallel-methods-for-deep | -1.7 |
learning-values-across-many-orders-of | -4.1 |
recurrent-experience-replay-in-distributed | 79.3 |
النموذج 30 | -3.2 |
dueling-network-architectures-for-deep | -0.4 |
increasing-the-action-gap-new-operators-for | -1.24 |
dueling-network-architectures-for-deep | 0.5 |
deep-exploration-via-bootstrapped-dqn | -1.3 |
deep-reinforcement-learning-with-double-q | -1.9 |
the-arcade-learning-environment-an-evaluation | 39.4 |
fully-parameterized-quantile-function-for | 17.3 |
dueling-network-architectures-for-deep | -1.3 |
online-and-offline-reinforcement-learning-by | 41.66 |
deep-reinforcement-learning-with-double-q | -2.5 |
increasing-the-action-gap-new-operators-for | -0.25 |
distributed-prioritized-experience-replay | 33 |
prioritized-experience-replay | 1.3 |