HyperAI
الرئيسية
الأخبار
أحدث الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
العربية
HyperAI
Toggle sidebar
البحث في الموقع...
⌘
K
الرئيسية
SOTA
كشف الأخطاء
Anomaly Detection On Unlabeled Cifar 10 Vs
Anomaly Detection On Unlabeled Cifar 10 Vs
المقاييس
AUROC
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
AUROC
Paper Title
Repository
Input Complexity (PixelCNN++)
53.5
Input complexity and out-of-distribution detection with likelihood-based generative models
SSD
89.6
SSD: A Unified Framework for Self-Supervised Outlier Detection
MeanShifted
90.0
Mean-Shifted Contrastive Loss for Anomaly Detection
Likelihood (Glow)
58.2
Input complexity and out-of-distribution detection with likelihood-based generative models
PsudoLabels ResNet-18
90.8
Out-of-Distribution Detection Without Class Labels
-
CSI
89.3
CSI: Novelty Detection via Contrastive Learning on Distributionally Shifted Instances
PsudoLabels ViT
96.7
Out-of-Distribution Detection Without Class Labels
-
PsudoLabels ResNet-152
93.3
Out-of-Distribution Detection Without Class Labels
-
Likelihood (PixelCNN++)
52.6
Input complexity and out-of-distribution detection with likelihood-based generative models
SCAN Features
90.2
Out-of-Distribution Detection Without Class Labels
-
Input Complexity (Glow)
73.6
Input complexity and out-of-distribution detection with likelihood-based generative models
GOAD
89.2
Classification-Based Anomaly Detection for General Data
MTL
82.92
Shifting Transformation Learning for Out-of-Distribution Detection
-
0 of 13 row(s) selected.
Previous
Next