HyperAI
HyperAI
الرئيسية
المنصة
الوثائق
الأخبار
الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
شروط الخدمة
سياسة الخصوصية
العربية
HyperAI
HyperAI
Toggle Sidebar
البحث في الموقع...
⌘
K
Command Palette
Search for a command to run...
المنصة
الرئيسية
SOTA
تصنيف السحابة النقطية ثلاثية الأبعاد
3D Point Cloud Classification On Scanobjectnn
3D Point Cloud Classification On Scanobjectnn
المقاييس
Mean Accuracy
OBJ-BG (OA)
OBJ-ONLY (OA)
Overall Accuracy
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
Mean Accuracy
OBJ-BG (OA)
OBJ-ONLY (OA)
Overall Accuracy
Paper Title
OmniVec2
-
-
-
97.2
OmniVec2 - A Novel Transformer based Network for Large Scale Multimodal and Multitask Learning
PointGST
-
99.48
97.76
96.18
Parameter-Efficient Fine-Tuning in Spectral Domain for Point Cloud Learning
OmniVec
-
-
-
96.1
OmniVec: Learning robust representations with cross modal sharing
GPSFormer
93.8
-
-
95.4
GPSFormer: A Global Perception and Local Structure Fitting-based Transformer for Point Cloud Understanding
ReCon++
-
98.80
97.59
95.25
ShapeLLM: Universal 3D Object Understanding for Embodied Interaction
PointGPT
-
97.2
96.6
93.4
PointGPT: Auto-regressively Generative Pre-training from Point Clouds
GPSFormer-elite
92.51
-
-
93.30
GPSFormer: A Global Perception and Local Structure Fitting-based Transformer for Point Cloud Understanding
Mamba3D
-
94.49
92.43
92.64
Mamba3D: Enhancing Local Features for 3D Point Cloud Analysis via State Space Model
Mamba3D (no voting)
-
92.94
92.08
91.81
Mamba3D: Enhancing Local Features for 3D Point Cloud Analysis via State Space Model
ULIP-2 + PointNeXt
91.2
-
-
91.5
ULIP-2: Towards Scalable Multimodal Pre-training for 3D Understanding
ReCon
-
95.35
93.80
91.26
Contrast with Reconstruct: Contrastive 3D Representation Learning Guided by Generative Pretraining
ULIP-2 + PointNeXt (no voting)
90.3
-
-
90.8
ULIP-2: Towards Scalable Multimodal Pre-training for 3D Understanding
ReCon (no voting)
-
95.18
93.29
90.63
Contrast with Reconstruct: Contrastive 3D Representation Learning Guided by Generative Pretraining
DeLA
89.3
-
-
90.4
Decoupled Local Aggregation for Point Cloud Learning
PCP-MAE
-
95.52
94.32
90.35
PCP-MAE: Learning to Predict Centers for Point Masked Autoencoders
PointConT
88.5
-
-
90.3
Point Cloud Classification Using Content-based Transformer via Clustering in Feature Space
Point-RAE (no voting)
-
95.53
93.63
90.28
Regress Before Construct: Regress Autoencoder for Point Cloud Self-supervised Learning
Point-FEMAE
-
95.18
93.29
90.22
Towards Compact 3D Representations via Point Feature Enhancement Masked Autoencoders
I2P-MAE (no voting)
-
94.15
91.57
90.11
Learning 3D Representations from 2D Pre-trained Models via Image-to-Point Masked Autoencoders
ULIP + PointNeXt
88.6
-
-
89.7
ULIP: Learning a Unified Representation of Language, Images, and Point Clouds for 3D Understanding
0 of 75 row(s) selected.
Previous
Next