HyperAI
HyperAI
الرئيسية
المنصة
الوثائق
الأخبار
الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
شروط الخدمة
سياسة الخصوصية
العربية
HyperAI
HyperAI
Toggle Sidebar
البحث في الموقع...
⌘
K
Command Palette
Search for a command to run...
المنصة
الرئيسية
SOTA
تصنيف السحابة النقطية ثلاثية الأبعاد
3D Point Cloud Classification On Modelnet40
3D Point Cloud Classification On Modelnet40
المقاييس
Overall Accuracy
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
Overall Accuracy
Paper Title
PointGST
95.3
Parameter-Efficient Fine-Tuning in Spectral Domain for Point Cloud Learning
Mamba3D + Point-MAE
95.1
Mamba3D: Enhancing Local Features for 3D Point Cloud Analysis via State Space Model
ReCon++
95.0
ShapeLLM: Universal 3D Object Understanding for Embodied Interaction
PointGPT
94.9
-
point2vec
94.8
Point2Vec for Self-Supervised Representation Learning on Point Clouds
RepSurf-U
94.7
Surface Representation for Point Clouds
ReCon
94.7
Contrast with Reconstruct: Contrastive 3D Representation Learning Guided by Generative Pretraining
ULIP + PointMLP
94.7
ULIP: Learning a Unified Representation of Language, Images, and Point Clouds for 3D Understanding
OTMae3D
94.5
-
PointMLP+HyCoRe
94.5
Rethinking the compositionality of point clouds through regularization in the hyperbolic space
PointMLP
94.5
Rethinking Network Design and Local Geometry in Point Cloud: A Simple Residual MLP Framework
Point-FEMAE
94.5
Towards Compact 3D Representations via Point Feature Enhancement Masked Autoencoders
PointNet2+PointCMT
94.4
Let Images Give You More:Point Cloud Cross-Modal Training for Shape Analysis
IDPT
94.4
Instance-aware Dynamic Prompt Tuning for Pre-trained Point Cloud Models
OTMae3D (w/o Voting)
94.3
-
PTv2
94.2
Point Transformer V2: Grouped Vector Attention and Partition-based Pooling
PCP-MAE
94.2
PCP-MAE: Learning to Predict Centers for Point Masked Autoencoders
ExpPoint-MAE
94.2
ExpPoint-MAE: Better interpretability and performance for self-supervised point cloud transformers
IAE + DGCNN
94.2
Implicit Autoencoder for Point-Cloud Self-Supervised Representation Learning
CurveNet
94.2
Walk in the Cloud: Learning Curves for Point Clouds Shape Analysis
0 of 110 row(s) selected.
Previous
Next
3D Point Cloud Classification On Modelnet40 | SOTA | HyperAI