HyperAI
الرئيسية
الأخبار
أحدث الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
العربية
HyperAI
Toggle sidebar
البحث في الموقع...
⌘
K
الرئيسية
SOTA
3D Part Segmentation
3D Part Segmentation On Shapenet Part
3D Part Segmentation On Shapenet Part
المقاييس
Class Average IoU
Instance Average IoU
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
Class Average IoU
Instance Average IoU
Paper Title
Repository
InterpCNN
84.0
86.3
Interpolated Convolutional Networks for 3D Point Cloud Understanding
-
Point Voxel Transformer
-
86.5
PVT: Point-Voxel Transformer for Point Cloud Learning
Point-JEPA
85.8±0.1
-
Point-JEPA: A Joint Embedding Predictive Architecture for Self-Supervised Learning on Point Cloud
-
SSCNN
82.0
84.7
SyncSpecCNN: Synchronized Spectral CNN for 3D Shape Segmentation
-
Point Cloud Transformer
-
86.4
PCT: Point cloud transformer
DensePoint
84.2
86.4
DensePoint: Learning Densely Contextual Representation for Efficient Point Cloud Processing
CurveNet
-
86.8
Walk in the Cloud: Learning Curves for Point Clouds Shape Analysis
3D-JEPA
86.41
84.93
3D-JEPA: A Joint Embedding Predictive Architecture for 3D Self-Supervised Representation Learning
-
KPConv
85.1
86.4
KPConv: Flexible and Deformable Convolution for Point Clouds
GeomGCNN
-
89.1
Exploiting Local Geometry for Feature and Graph Construction for Better 3D Point Cloud Processing with Graph Neural Networks
-
PartNet
84.1
-
PartNet: A Recursive Part Decomposition Network for Fine-grained and Hierarchical Shape Segmentation
-
point2vec
84.6
86.3
Point2Vec for Self-Supervised Representation Learning on Point Clouds
RS-CNN
-
86.2
Relation-Shape Convolutional Neural Network for Point Cloud Analysis
SGPN
-
85.8
SGPN: Similarity Group Proposal Network for 3D Point Cloud Instance Segmentation
P2Sequence
-
85.2
Point2Sequence: Learning the Shape Representation of 3D Point Clouds with an Attention-based Sequence to Sequence Network
-
PointNet
-
83.7
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
PointGPT
84.8
86.6
-
-
PointGrid
82.2
86.4
PointGrid: A Deep Network for 3D Shape Understanding
DeltaConv (U-ResNet)
-
86.9
DeltaConv: Anisotropic Operators for Geometric Deep Learning on Point Clouds
ConvPoint
83.4
85.8
ConvPoint: Continuous Convolutions for Point Cloud Processing
0 of 67 row(s) selected.
Previous
Next