HyperAI
HyperAI초신경
홈
플랫폼
문서
뉴스
연구 논문
튜토리얼
데이터셋
백과사전
SOTA
LLM 모델
GPU 랭킹
컨퍼런스
전체 검색
소개
서비스 약관
개인정보 처리방침
한국어
HyperAI
HyperAI초신경
Toggle Sidebar
전체 사이트 검색...
⌘
K
Command Palette
Search for a command to run...
플랫폼
홈
SOTA
시각 객체 추적
Visual Object Tracking On Trackingnet
Visual Object Tracking On Trackingnet
평가 지표
Accuracy
Normalized Precision
Precision
평가 결과
이 벤치마크에서 각 모델의 성능 결과
Columns
모델 이름
Accuracy
Normalized Precision
Precision
Paper Title
MCITrack-L384
87.9
92.1
89.2
Exploring Enhanced Contextual Information for Video-Level Object Tracking
MCITrack-B224
86.3
90.9
86.1
Exploring Enhanced Contextual Information for Video-Level Object Tracking
ODTrack-L
86.1
-
-
ODTrack: Online Dense Temporal Token Learning for Visual Tracking
MixViT-L(ConvMAE)
86.1
90.3
86.0
MixFormer: End-to-End Tracking with Iterative Mixed Attention
ARTrackV2-L
86.1
90.4
86.2
ARTrackV2: Prompting Autoregressive Tracker Where to Look and How to Describe
LoRAT-g-378
86.0
90.2
86.1
Tracking Meets LoRA: Faster Training, Larger Model, Stronger Performance
ARTrack-L
85.6
89.6
86.0
Autoregressive Visual Tracking
LoRAT-L-378
85.6
89.7
85.4
Tracking Meets LoRA: Faster Training, Larger Model, Stronger Performance
SeqTrack-L384
85.5
89.8
85.8
Unified Sequence-to-Sequence Learning for Single- and Multi-Modal Visual Object Tracking
UNINEXT-H
85.4
89.0
86.4
Universal Instance Perception as Object Discovery and Retrieval
SAMURAI-L
85.3
-
-
SAMURAI: Adapting Segment Anything Model for Zero-Shot Visual Tracking with Motion-Aware Memory
ODTrack-B
85.1
-
-
ODTrack: Online Dense Temporal Token Learning for Visual Tracking
TATrack-L
85.0
89.3
84.5
Target-Aware Tracking with Long-term Context Attention
HIPTrack
84.5
89.1
83.8
HIPTrack: Visual Tracking with Historical Prompts
SwinTrack-B-384
84
88.2
83.2
SwinTrack: A Simple and Strong Baseline for Transformer Tracking
OSTrack-384
83.9
88.5
83.2
Joint Feature Learning and Relation Modeling for Tracking: A One-Stream Framework
MixFormer-L
83.9
88.9
83.1
MixFormer: End-to-End Tracking with Iterative Mixed Attention
NeighborTrack-OSTrack
83.79
88.30
-
NeighborTrack: Improving Single Object Tracking by Bipartite Matching with Neighbor Tracklets
MixFormerV2-B
83.4
88.1
81.6
-
MITS
83.4
88.9
84.6
Integrating Boxes and Masks: A Multi-Object Framework for Unified Visual Tracking and Segmentation
0 of 37 row(s) selected.
Previous
Next