HyperAI
HyperAI초신경
홈
플랫폼
문서
뉴스
연구 논문
튜토리얼
데이터셋
백과사전
SOTA
LLM 모델
GPU 랭킹
컨퍼런스
전체 검색
소개
서비스 약관
개인정보 처리방침
한국어
HyperAI
HyperAI초신경
Toggle Sidebar
전체 사이트 검색...
⌘
K
Command Palette
Search for a command to run...
플랫폼
홈
SOTA
시각 객체 추적
Visual Object Tracking On Tnl2K
Visual Object Tracking On Tnl2K
평가 지표
AUC
평가 결과
이 벤치마크에서 각 모델의 성능 결과
Columns
모델 이름
AUC
Paper Title
MCITrack-L384
65.3
Exploring Enhanced Contextual Information for Video-Level Object Tracking
MCITrack-B224
62.9
Exploring Enhanced Contextual Information for Video-Level Object Tracking
LoRAT-g-378
62.7
Tracking Meets LoRA: Faster Training, Larger Model, Stronger Performance
LoRAT-L-378
62.3
Tracking Meets LoRA: Faster Training, Larger Model, Stronger Performance
ODTrack-L
61.7
ODTrack: Online Dense Temporal Token Learning for Visual Tracking
ARTrackV2-L
61.6
ARTrackV2: Prompting Autoregressive Tracker Where to Look and How to Describe
ODTrack-B
60.9
ODTrack: Online Dense Temporal Token Learning for Visual Tracking
RTracker-L
60.6
RTracker: Recoverable Tracking via PN Tree Structured Memory
ARTrack-L
60.3
Autoregressive Visual Tracking
SeqTrack-L384
57.8
Unified Sequence-to-Sequence Learning for Single- and Multi-Modal Visual Object Tracking
MixFormerV2-B
57.4
-
DropTrack
56.9
DropMAE: Learning Representations via Masked Autoencoders with Spatial-Attention Dropout for Temporal Matching Tasks
AdaSwitcher
-
Towards More Flexible and Accurate Object Tracking with Natural Language: Algorithms and Benchmark
0 of 13 row(s) selected.
Previous
Next