HyperAI
HyperAI초신경
홈
뉴스
최신 연구 논문
튜토리얼
데이터셋
백과사전
SOTA
LLM 모델
GPU 랭킹
컨퍼런스
전체 검색
소개
한국어
HyperAI
HyperAI초신경
Toggle sidebar
전체 사이트 검색...
⌘
K
홈
SOTA
비디오 품질 평가
Video Quality Assessment On Msu Video Quality
Video Quality Assessment On Msu Video Quality
평가 지표
KLCC
PLCC
SRCC
Type
평가 결과
이 벤치마크에서 각 모델의 성능 결과
Columns
모델 이름
KLCC
PLCC
SRCC
Type
Paper Title
Repository
LI
0.7640
0.9270
0.9131
NR
Blindly Assess Quality of In-the-Wild Videos via Quality-aware Pre-training and Motion Perception
-
DOVER
0.7216
0.9099
0.8871
NR
Exploring Video Quality Assessment on User Generated Contents from Aesthetic and Technical Perspectives
-
NIMA
0.6745
0.8784
0.8494
NR
NIMA: Neural Image Assessment
-
SPAQ MT-S
0.7186
0.8814
0.8822
NR
Perceptual Quality Assessment of Smartphone Photography
VIDEVAL
0.5414
0.7717
0.7286
NR
UGC-VQA: Benchmarking Blind Video Quality Assessment for User Generated Content
-
FASTER-VQA
0.5645
0.8087
0.7508
NR
FAST-VQA: Efficient End-to-end Video Quality Assessment with Fragment Sampling
-
FAST-VQA
0.6498
0.8613
0.8308
NR
FAST-VQA: Efficient End-to-end Video Quality Assessment with Fragment Sampling
-
Y-NIQE
0.4215
0.6713
0.5985
NR
Barriers towards no-reference metrics application to compressed video quality analysis: on the example of no-reference metric NIQE
-
MDTVSFA
0.7883
0.9431
0.9289
NR
Unified Quality Assessment of In-the-Wild Videos with Mixed Datasets Training
-
GVSP-UGCVQA-NR (multi_scale)
0.6942
0.8851
0.8673
NR
Deep Learning based Full-reference and No-reference Quality Assessment Models for Compressed UGC Videos
-
PaQ-2-PiQ
0.7079
0.8549
0.8705
NR
From Patches to Pictures (PaQ-2-PiQ): Mapping the Perceptual Space of Picture Quality
-
VSFA
0.7483
0.9180
0.9049
NR
Quality Assessment of In-the-Wild Videos
-
MEON
0.3775
0.2898
0.5066
NR
-
-
KonCept512
0.6608
0.8464
0.8360
NR
KonIQ-10k: An ecologically valid database for deep learning of blind image quality assessment
-
MUSIQ
0.7433
0.9068
0.9004
NR
MUSIQ: Multi-scale Image Quality Transformer
-
SPAQ MT-A
0.7148
0.8824
0.8794
NR
Perceptual Quality Assessment of Smartphone Photography
UNIQUE
0.7648
0.9238
0.9148
NR
UNIQUE: Unsupervised Image Quality Estimation
-
DBCNN
0.7750
0.9222
0.9220
NR
Blind Image Quality Assessment Using A Deep Bilinear Convolutional Neural Network
-
LINEARITY
0.7589
0.9106
0.9104
NR
Norm-in-Norm Loss with Faster Convergence and Better Performance for Image Quality Assessment
-
GVSP-UGCVQA-NR (single_scale)
0.7037
0.8933
0.8742
NR
Deep Learning based Full-reference and No-reference Quality Assessment Models for Compressed UGC Videos
-
0 of 21 row(s) selected.
Previous
Next
Video Quality Assessment On Msu Video Quality | SOTA | HyperAI초신경