HyperAI
HyperAI초신경
홈
플랫폼
문서
뉴스
연구 논문
튜토리얼
데이터셋
백과사전
SOTA
LLM 모델
GPU 랭킹
컨퍼런스
전체 검색
소개
서비스 약관
개인정보 처리방침
한국어
HyperAI
HyperAI초신경
Toggle Sidebar
전체 사이트 검색...
⌘
K
Command Palette
Search for a command to run...
플랫폼
홈
SOTA
비디오 품질 평가
Video Quality Assessment On Msu Sr Qa Dataset
Video Quality Assessment On Msu Sr Qa Dataset
평가 지표
KLCC
PLCC
SROCC
Type
평가 결과
이 벤치마크에서 각 모델의 성능 결과
Columns
모델 이름
KLCC
PLCC
SROCC
Type
Paper Title
ClipIQA+
0.69774
0.71808
0.56875
NR
Exploring CLIP for Assessing the Look and Feel of Images
PieAPP
0.61945
0.75743
0.75215
FR
PieAPP: Perceptual Image-Error Assessment through Pairwise Preference
Q-Align (IQA)
0.61677
0.74116
0.75088
NR
Q-Align: Teaching LMMs for Visual Scoring via Discrete Text-Defined Levels
Q-Align (VQA)
0.58634
0.71121
0.71812
NR
Q-Align: Teaching LMMs for Visual Scoring via Discrete Text-Defined Levels
PaQ-2-PiQ
0.57753
0.70988
0.71167
NR
From Patches to Pictures (PaQ-2-PiQ): Mapping the Perceptual Space of Picture Quality
MUSIQ trained on PaQ-2-PiQ
0.55312
0.66531
0.67746
NR
MUSIQ: Multi-scale Image Quality Transformer
DBCNN
0.55139
0.63971
0.68621
NR
Blind Image Quality Assessment Using A Deep Bilinear Convolutional Neural Network
MANIQA
0.54744
0.62733
0.66613
NR
MANIQA: Multi-dimension Attention Network for No-Reference Image Quality Assessment
TOPIQ trained on SPAQ (NR)
0.53140
0.60905
0.64923
NR
TOPIQ: A Top-down Approach from Semantics to Distortions for Image Quality Assessment
MUSIQ trained on SPAQ
0.52673
0.60216
0.64927
NR
MUSIQ: Multi-scale Image Quality Transformer
ClipIQA+ ResNet50
0.52628
0.65154
0.65713
NR
Exploring CLIP for Assessing the Look and Feel of Images
Ma-Metric
0.52301
0.65357
0.67362
NR
Learning a No-Reference Quality Metric for Single-Image Super-Resolution
Linearity (Norm-in-Norm Loss)
0.52172
0.62204
0.64382
NR
Norm-in-Norm Loss with Faster Convergence and Better Performance for Image Quality Assessment
MUSIQ trained on KONIQ
0.51897
0.59151
0.64589
NR
MUSIQ: Multi-scale Image Quality Transformer
TOPIQ
0.50670
0.57674
0.62715
NR
TOPIQ: A Top-down Approach from Semantics to Distortions for Image Quality Assessment
ClipIQA
0.49417
0.58944
0.60808
NR
Exploring CLIP for Assessing the Look and Feel of Images
TReS trained on KONIQ
0.49004
0.56226
0.62578
NR
No-Reference Image Quality Assessment via Transformers, Relative Ranking, and Self-Consistency
TReS
0.48901
0.56277
0.62496
NR
No-Reference Image Quality Assessment via Transformers, Relative Ranking, and Self-Consistency
HyperIQA
0.48466
0.55211
0.59883
NR
Blindly Assess Image Quality in the Wild Guided by a Self-Adaptive Hyper Network
TOPIQ FACE
0.48428
0.58949
0.59564
NR
TOPIQ: A Top-down Approach from Semantics to Distortions for Image Quality Assessment
0 of 60 row(s) selected.
Previous
Next
Video Quality Assessment On Msu Sr Qa Dataset | SOTA | HyperAI초신경