HyperAI
HyperAI초신경
홈
뉴스
연구 논문
튜토리얼
데이터셋
백과사전
SOTA
LLM 모델
GPU 랭킹
컨퍼런스
전체 검색
소개
한국어
HyperAI
HyperAI초신경
Toggle sidebar
전체 사이트 검색...
⌘
K
전체 사이트 검색...
⌘
K
홈
SOTA
비디오 품질 평가
Video Quality Assessment On Msu Sr Qa Dataset
Video Quality Assessment On Msu Sr Qa Dataset
평가 지표
KLCC
PLCC
SROCC
Type
평가 결과
이 벤치마크에서 각 모델의 성능 결과
Columns
모델 이름
KLCC
PLCC
SROCC
Type
Paper Title
Repository
3SSIM
0.16365
0.20138
0.21450
FR
-
-
ClipIQA+
0.69774
0.71808
0.56875
NR
Exploring CLIP for Assessing the Look and Feel of Images
MUSIQ trained on KONIQ
0.51897
0.59151
0.64589
NR
MUSIQ: Multi-scale Image Quality Transformer
FSIM
0.26942
0.35083
0.34996
FR
FSIM: A Feature Similarity Index for Image Quality Assessment
-
MSE
0.12067
0.09428
0.16441
FR
-
-
PieAPP
0.61945
0.75743
0.75215
FR
PieAPP: Perceptual Image-Error Assessment through Pairwise Preference
Linearity (Norm-in-Norm Loss)
0.52172
0.62204
0.64382
NR
Norm-in-Norm Loss with Faster Convergence and Better Performance for Image Quality Assessment
MS-SSIM
0.07821
0.16035
0.11017
FR
Multiscale structural similarity for image quality assessment
-
TOPIQ (IAA)
0.40663
0.51061
0.51687
NR
TOPIQ: A Top-down Approach from Semantics to Distortions for Image Quality Assessment
DBCNN
0.55139
0.63971
0.68621
NR
Blind Image Quality Assessment Using A Deep Bilinear Convolutional Neural Network
Q-Align (IQA)
0.61677
0.74116
0.75088
NR
Q-Align: Teaching LMMs for Visual Scoring via Discrete Text-Defined Levels
LPIPS (Alex)
0.43158
0.52385
0.54461
FR
The Unreasonable Effectiveness of Deep Features as a Perceptual Metric
PSNR over Y
0.09998
0.13840
0.12914
FR
-
-
TOPIQ trained on PIPAL
0.42811
0.57564
0.55568
FR
TOPIQ: A Top-down Approach from Semantics to Distortions for Image Quality Assessment
LPIPS (VGG)
0.41471
0.52820
0.52868
FR
The Unreasonable Effectiveness of Deep Features as a Perceptual Metric
ERQA
0.47785
0.60188
0.59345
FR
ERQA: Edge-Restoration Quality Assessment for Video Super-Resolution
AHIQ
0.47674
0.62311
0.60468
FR
-
-
VMAF
0.32283
0.40073
0.43219
FR
-
-
DISTS
0.42320
0.55042
0.53346
FR
Image Quality Assessment: Unifying Structure and Texture Similarity
Q-Align (IAA)
0.42211
0.50055
0.51521
NR
Q-Align: Teaching LMMs for Visual Scoring via Discrete Text-Defined Levels
0 of 60 row(s) selected.
Previous
Next