Unsupervised Domain Adaptation
비지도 도메인 적응은 소스 도메인에서 많은 레이블이 붙은 훈련 샘플을 통해 학습된 지식을 레이블이 없는 데이터만 있는 타겟 도메인으로 전송하는 학습 프레임워크입니다. 이 방법은 소스 도메인과 타겟 도메인 간의 분포 차이를 줄여서 모델의 새로운 환경에서의 일반화 능력을 향상시키므로, 다양한 응용 분야에서 매우 유용합니다.
BDD100k to Cityscapes
CFC-DAOD
ALDI++ (ResNet50-FPN)
Cityscapes to Foggy Cityscapes
ILLUME
Cityscapes-to-OxfordCar
Uncertainty + Adaboost
ClonedPerson
SpCL
CUHK03 to Market
CUHK03 to MSMT
DomainNet
SAMB
Duke to Market
Duke to MSMT
EPIC-KITCHENS-100
FHIST
GTA5+Synscapes+Urbansyn to Cityscapes
GTA5-to-Cityscapes
CLUDA+HRDA
GTAV-to-Cityscapes Labels
CLUDA+HRDA
HMDB-UCF
ImageNet-A
EfficientNet-L2 NoisyStudent + RPL
ImageNet-C
EfficientNet-L2+RPL
ImageNet-R
Jester (Gesture Recognition)
TranSVAE
Kitti to Cityscapes
ViSGA
Market to CUHK03
CORE-ReID
Market to Duke
CCTSE
Market to MSMT
MSCOCO to FLIR ADAS
SGADA
Office-31
Implicit Alignment (with MDD)
Office-Home
PMTrans
Office-Home (RS-UT imbalance)
Implicit Alignment (with MDD)
OOD-CV
UGT
PACS
CoVi
Pascal VOC to Clipart1K
ILLUME
Portraits (over time)
Gradual Self-Training (Small Conv)
PreSIL to KITTI
PointDAN
SIM10K to BDD100K
CDN
SIM10K to Cityscapes
ALDI++ (ResNet50-FPN, 1024px)
SYNTHIA-to-Cityscapes
MIC+CSI
UCF-HMDB
UDA-CH
DA-RetinaNet
virtual KITTI to KITTI (MDE)
CoReg
VisDA-2017
TransAdapter
VisDA2017
TransAdapter