HyperAIHyperAI초신경
홈뉴스연구 논문튜토리얼데이터셋백과사전SOTALLM 모델GPU 랭킹컨퍼런스
전체 검색
소개
한국어
HyperAIHyperAI초신경
  1. 홈
  2. SOTA
  3. 표면 법선 추정
  4. Surface Normals Estimation On Pcpnet

Surface Normals Estimation On Pcpnet

평가 지표

RMSE

평가 결과

이 벤치마크에서 각 모델의 성능 결과

모델 이름
RMSE
Paper TitleRepository
Nesti-Net12.41Nesti-Net: Normal Estimation for Unstructured 3D Point Clouds using Convolutional Neural Networks
Hsurf10.11HSurf-Net: Normal Estimation for 3D Point Clouds by Learning Hyper Surfaces
AdaFit10.76AdaFit: Rethinking Learning-based Normal Estimation on Point Clouds
MSECNet9.76MSECNet: Accurate and Robust Normal Estimation for 3D Point Clouds by Multi-Scale Edge Conditioning-
GraphFit10.26GraphFit: Learning Multi-scale Graph-Convolutional Representation for Point Cloud Normal Estimation
DeepFit11.8DeepFit: 3D Surface Fitting via Neural Network Weighted Least Squares
NeAF10.22NeAF: Learning Neural Angle Fields for Point Normal Estimation
Iter-Net11.84Deep Iterative Surface Normal Estimation
0 of 8 row(s) selected.
HyperAI

학습, 이해, 실천, 커뮤니티와 함께 인공지능의 미래를 구축하다

한국어

소개

회사 소개데이터셋 도움말

제품

뉴스튜토리얼데이터셋백과사전

링크

TVM 한국어Apache TVMOpenBayes

© HyperAI초신경

TwitterBilibili