HyperAI
HyperAI초신경
홈
플랫폼
문서
뉴스
연구 논문
튜토리얼
데이터셋
백과사전
SOTA
LLM 모델
GPU 랭킹
컨퍼런스
전체 검색
소개
서비스 약관
개인정보 처리방침
한국어
HyperAI
HyperAI초신경
Toggle Sidebar
전체 사이트 검색...
⌘
K
Command Palette
Search for a command to run...
플랫폼
홈
SOTA
세마틱 세그멘테이션
Semantic Segmentation On Toronto 3D L002
Semantic Segmentation On Toronto 3D L002
평가 지표
mIoU
평가 결과
이 벤치마크에서 각 모델의 성능 결과
Columns
모델 이름
mIoU
Paper Title
EyeNet
81.13
Human Vision Based 3D Point Cloud Semantic Segmentation of Large-Scale Outdoor Scene
RandLA-Net
74.3
RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds
CLOUDSPAM
71.8
CLOUDSPAM: Contrastive Learning On Unlabeled Data for Segmentation and Pre-Training Using Aggregated Point Clouds and MoCo
DA-supervised
69.3
CLOUDSPAM: Contrastive Learning On Unlabeled Data for Segmentation and Pre-Training Using Aggregated Point Clouds and MoCo
PointNet++
56.5
PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space
0 of 5 row(s) selected.
Previous
Next
Semantic Segmentation On Toronto 3D L002 | SOTA | HyperAI초신경