HyperAI초신경

Semantic Segmentation On Ade20K Val

평가 지표

mIoU

평가 결과

이 벤치마크에서 각 모델의 성능 결과

비교 표
모델 이름mIoU
semask-semantically-masked-transformers-for-158.2
auto-deeplab-hierarchical-neural-architecture43.98
beit-bert-pre-training-of-image-transformers57.0
swin-transformer-hierarchical-vision53.5
eva-exploring-the-limits-of-masked-visual61.5
mixmim-mixed-and-masked-image-modeling-for50.3
semask-semantically-masked-transformers-for-157.0
augmenting-convolutional-networks-with52.8
masked-attention-mask-transformer-for57.7
twins-revisiting-spatial-attention-design-in50.2
disentangled-non-local-neural-networks45.97
vision-transformers-for-dense-prediction49.02
dcnas-densely-connected-neural-architecture47.12
adaptive-context-network-for-scene-parsing-145.90
understanding-gaussian-attention-bias-of46.41
masked-attention-mask-transformer-for56.4
oneformer-one-transformer-to-rule-universal60.8
vision-transformer-adapter-for-dense58.4
is-attention-better-than-matrix-decomposition-151.0
object-contextual-representations-for45.28
sernet-former-semantic-segmentation-by59.35
resnest-split-attention-networks47.60
deit-iii-revenge-of-the-vit55.6
gswin-gated-mlp-vision-model-with47.63
elsa-enhanced-local-self-attention-for-vision50.3
context-prior-for-scene-segmentation46.27
semask-semantically-masked-transformers-for-156.2
fapn-feature-aligned-pyramid-network-for56.7
vision-transformer-adapter-for-dense60.5
모델 3046.9
segformer-simple-and-efficient-design-for51.8
is-attention-better-than-matrix-decomposition-149.6
segmenter-transformer-for-semantic49.61
asymmetric-non-local-neural-networks-for45.24
ctnet-context-based-tandem-network-for45.94
refinenet-multi-path-refinement-networks-for40.70
improve-vision-transformers-training-by54.4%
pyramid-scene-parsing-network43.29%
semask-semantically-masked-transformers-for-153.5
oneformer-one-transformer-to-rule-universal57.7
gswin-gated-mlp-vision-model-with49.69
rethinking-decoders-for-transformer-based52.9
unified-perceptual-parsing-for-scene42.66
high-resolution-representations-for-labeling42.99
symbolic-graph-reasoning-meets-convolutions44.32
mask-dino-towards-a-unified-transformer-based-160.8
context-encoding-for-semantic-segmentation44.65
is-attention-better-than-matrix-decomposition-151.5
pyramidal-convolution-rethinking45.99
representation-separation-for-semantic58.4
vit-comer-vision-transformer-with62.1
multimae-multi-modal-multi-task-masked46.2
oneformer-one-transformer-to-rule-universal58.6
augmenting-convolutional-networks-with52.9
semask-semantically-masked-transformers-for-157.5
object-contextual-representations-for45.66
segmenter-transformer-for-semantic53.63
mixmim-mixed-and-masked-image-modeling-for53.8
rethinking-decoders-for-transformer-based54.3
shuffle-transformer-rethinking-spatial50.5
efficient-self-ensemble-framework-for-157.1
crossformer-a-versatile-vision-transformer51.4%
davit-dual-attention-vision-transformers46.3
object-contextual-representations-for47.98
psanet-point-wise-spatial-attention-network43.77
resnest-split-attention-networks48.36
augmenting-convolutional-networks-with49.3
davit-dual-attention-vision-transformers48.8
oneformer-one-transformer-to-rule-universal58.3
adaptive-context-network-for-scene-parsing-145.90
deit-iii-revenge-of-the-vit54.1
pyramid-scene-parsing-network43.51%
oneformer-one-transformer-to-rule-universal58.4
image-as-a-foreign-language-beit-pretraining62.8
augmenting-convolutional-networks-with51.1
contrastive-learning-rivals-masked-image61.4
k-net-towards-unified-image-segmentation54.3
shuffle-transformer-rethinking-spatial49.6
per-pixel-classification-is-not-all-you-need55.6
efficient-self-ensemble-framework-for-154.2
segmenter-transformer-for-semantic50.0
shuffle-transformer-rethinking-spatial47.6
focal-self-attention-for-local-global55.4
resnest-split-attention-networks46.91
segvit-semantic-segmentation-with-plain55.2
cswin-transformer-a-general-vision55.7
gswin-gated-mlp-vision-model-with45.07
semask-semantically-masked-transformers-for-158.2
beyond-self-attention-external-attention45.33
dilated-neighborhood-attention-transformer58.1
refinenet-multi-path-refinement-networks-for40.20
dynamic-structured-semantic-propagation43.68
location-aware-upsampling-for-semantic45.02
swin-transformer-hierarchical-vision49.7