HyperAI
HyperAI초신경
홈
플랫폼
문서
뉴스
연구 논문
튜토리얼
데이터셋
백과사전
SOTA
LLM 모델
GPU 랭킹
컨퍼런스
전체 검색
소개
서비스 약관
개인정보 처리방침
한국어
HyperAI
HyperAI초신경
Toggle Sidebar
전체 사이트 검색...
⌘
K
Command Palette
Search for a command to run...
플랫폼
홈
SOTA
세마틱 세그멘테이션
Semantic Segmentation On Acdc Scribbles
Semantic Segmentation On Acdc Scribbles
평가 지표
Dice (Average)
평가 결과
이 벤치마크에서 각 모델의 성능 결과
Columns
모델 이름
Dice (Average)
Paper Title
ScribFormer
88.8%
ScribFormer: Transformer Makes CNN Work Better for Scribble-based Medical Image Segmentation
ScribbleVC
88.4%
ScribbleVC: Scribble-supervised Medical Image Segmentation with Vision-Class Embedding
CycleMix
84.8%
CycleMix: A Holistic Strategy for Medical Image Segmentation from Scribble Supervision
CutMix
70.5%
CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features
TFCNs
64.5%
TFCNs: A CNN-Transformer Hybrid Network for Medical Image Segmentation
Puzzle Mix
62.4%
Puzzle Mix: Exploiting Saliency and Local Statistics for Optimal Mixup
0 of 6 row(s) selected.
Previous
Next
Semantic Segmentation On Acdc Scribbles | SOTA | HyperAI초신경