HyperAI초신경
홈
뉴스
최신 연구 논문
튜토리얼
데이터셋
백과사전
SOTA
LLM 모델
GPU 랭킹
컨퍼런스
전체 검색
소개
한국어
HyperAI초신경
Toggle sidebar
전체 사이트 검색...
⌘
K
홈
SOTA
Robust 3D Semantic Segmentation
Robust 3D Semantic Segmentation On
Robust 3D Semantic Segmentation On
평가 지표
mean Corruption Error (mCE)
평가 결과
이 벤치마크에서 각 모델의 성능 결과
Columns
모델 이름
mean Corruption Error (mCE)
Paper Title
Repository
PolarNet
118.56%
PolarNet: An Improved Grid Representation for Online LiDAR Point Clouds Semantic Segmentation
SqueezeSegV2 (64x2048)
152.45%
SqueezeSegV2: Improved Model Structure and Unsupervised Domain Adaptation for Road-Object Segmentation from a LiDAR Point Cloud
KPConv
99.54%
KPConv: Flexible and Deformable Convolution for Point Clouds
2DPASS
106.14%
2DPASS: 2D Priors Assisted Semantic Segmentation on LiDAR Point Clouds
MinkUNet-18
100.00%
4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks
PIDS-1.2x
104.13%
PIDS: Joint Point Interaction-Dimension Search for 3D Point Cloud
-
Cylinder3D (torchsparse)
103.13%
Cylindrical and Asymmetrical 3D Convolution Networks for LiDAR Segmentation
CPGNet
107.34%
CPGNet: Cascade Point-Grid Fusion Network for Real-Time LiDAR Semantic Segmentation
PIDS-2.0x
101.20%
PIDS: Joint Point Interaction-Dimension Search for 3D Point Cloud
-
GFNet
108.68%
GFNet: Geometric Flow Network for 3D Point Cloud Semantic Segmentation
SPVCNN-34
99.16%
Searching Efficient 3D Architectures with Sparse Point-Voxel Convolution
CENet (64x2048)
103.41%
CENet: Toward Concise and Efficient LiDAR Semantic Segmentation for Autonomous Driving
RPVNet
111.74%
RPVNet: A Deep and Efficient Range-Point-Voxel Fusion Network for LiDAR Point Cloud Segmentation
-
WaffleIron
109.54%
Using a Waffle Iron for Automotive Point Cloud Semantic Segmentation
FIDNet (64x2048)
113.81%
FIDNet: LiDAR Point Cloud Semantic Segmentation with Fully Interpolation Decoding
Cylinder3D (spconv)
103.25%
Cylindrical and Asymmetrical 3D Convolution Networks for LiDAR Segmentation
MinkUNet-34
100.61%
4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks
SalsaNext (64x2048)
116.14%
SalsaNext: Fast, Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds for Autonomous Driving
SqueezeSeg (64x2048)
164.87%
SqueezeSeg: Convolutional Neural Nets with Recurrent CRF for Real-Time Road-Object Segmentation from 3D LiDAR Point Cloud
RangeNet-21 (64x2048)
136.33%
RangeNet++: Fast and Accurate LiDAR Semantic Segmentation
0 of 22 row(s) selected.
Previous
Next