HyperAI초신경
홈
뉴스
최신 연구 논문
튜토리얼
데이터셋
백과사전
SOTA
LLM 모델
GPU 랭킹
컨퍼런스
전체 검색
소개
한국어
HyperAI초신경
Toggle sidebar
전체 사이트 검색...
⌘
K
홈
SOTA
Point Cloud Registration
Point Cloud Registration On 3Dmatch At Least 1
Point Cloud Registration On 3Dmatch At Least 1
평가 지표
RE (all)
Recall (0.3m, 15 degrees)
TE (all)
평가 결과
이 벤치마크에서 각 모델의 성능 결과
Columns
모델 이름
RE (all)
Recall (0.3m, 15 degrees)
TE (all)
Paper Title
Repository
PCAM-Sparse (All post-processing)
8.9
92.4
0.23
PCAM: Product of Cross-Attention Matrices for Rigid Registration of Point Clouds
GeoTransformer
-
95
-
Geometric Transformer for Fast and Robust Point Cloud Registration
RANSAC-2M
-
66.1
-
Fast Point Feature Histograms (FPFH) for 3D Registration
DCP
-
3.22
-
Deep Closest Point: Learning Representations for Point Cloud Registration
ICP (P2Plane)
-
6.59
-
Open3D: A Modern Library for 3D Data Processing
Super4PCS
-
21.6
-
Super 4PCS Fast Global Pointcloud Registration via Smart Indexing
Go-ICP
-
22.9
-
Go-ICP: A Globally Optimal Solution to 3D ICP Point-Set Registration
-
PointNetLK
-
1.61
-
PointNetLK: Robust & Efficient Point Cloud Registration using PointNet
FGR
-
42.7
-
Fast Global Registration
Exhaustive Grid Search
-
84.11
-
Addressing the generalization of 3D registration methods with a featureless baseline and an unbiased benchmark
ICP (P2Point)
-
6.04
-
Open3D: A Modern Library for 3D Data Processing
PCAM-Soft (All post-processing)
9.8
91.3
0.24
PCAM: Product of Cross-Attention Matrices for Rigid Registration of Point Clouds
DGR (RE (all), TE(all) are reported in PCAM)
9.5
91.3
0.25
Deep Global Registration
NgeNet
4.932
95.0
0.155
Leveraging Inlier Correspondences Proportion for Point Cloud Registration
0 of 14 row(s) selected.
Previous
Next