Network Pruning On Cifar 10
평가 지표
Accuracy
GFLOPs
평가 결과
이 벤치마크에서 각 모델의 성능 결과
모델 이름 | Accuracy | GFLOPs | Paper Title | Repository |
---|---|---|---|---|
TAS-pruned ResNet-110 | 94.33 | 0.119 | Network Pruning via Transformable Architecture Search | |
MobileNet – Quantised | - | - | Quantisation and Pruning for Neural Network Compression and Regularisation | |
ShuffleNet – Quantised | - | - | Quantisation and Pruning for Neural Network Compression and Regularisation | |
AlexNet – Quantised | - | - | Quantisation and Pruning for Neural Network Compression and Regularisation |
0 of 4 row(s) selected.