HyperAI초신경

Music Source Separation On Musdb18

평가 지표

SDR (avg)
SDR (bass)
SDR (drums)
SDR (other)
SDR (vocals)

평가 결과

이 벤치마크에서 각 모델의 성능 결과

비교 표
모델 이름SDR (avg)SDR (bass)SDR (drums)SDR (other)SDR (vocals)
end-to-end-music-source-separation-is-it3.52.494.600.543.46
mmdenselstm-an-efficient-combination-of6.045.406.814.807.16
kuielab-mdx-net-a-two-stream-neural-network7.547.867.335.959.00
an-efficient-short-time-discrete-cosine6.815.887.635.148.57
music-source-separation-in-the-waveform-16.797.607.584.697.29
wave-u-net-a-multi-scale-neural-network-for3.233.214.222.253.25
music-source-separation-in-the-waveform-16.287.016.864.426.84
hybrid-spectrogram-and-waveform-source7.728.678.585.598.04
tasnet-surpassing-ideal-time-frequency5.735.666.084.376.81
music-source-separation-with-band-split-rnn8.978.1610.157.0810.47
spleeter-a-fast-and-state-of-the-art-music5.915.516.714.026.86
sound-demixing-challenge-2023-music-demixing8.348.458.446.869.59
tasnet-surpassing-ideal-time-frequency6.327.007.11-6.74
open-unmix-a-reference-implementation-for6.3166.0157.1484.8897.213
hierarchic-temporal-convolutional-network6.897.927.334.927.37
meta-learning-extractors-for-music-source5.525.585.914.196.40
cws-presunet-music-source-separation-with6.775.936.385.848.92
d3net-densely-connected-multidilated-densenet6.686.207.365.377.80
lasaft-latent-source-attentive-frequency5.885.635.684.877.33
open-unmix-a-reference-implementation-for5.335.235.734.026.32
music-source-separation-with-band-split-rnn8.237.518.586.6210.21
hybrid-transformers-for-music-source9.2010.4710.836.419.37
contrastive-learning-based-deep-latent6.477.297.054.626.91
d3net-densely-connected-multidilated-densenet6.015.257.014.537.24
all-for-one-and-one-for-all-improving-music5.795.436.474.646.61
hybrid-transformers-for-music-source9.009.7810.086.429.20
tf-attention-net-an-end-to-end-neural-network5.655.256.634.096.61