HyperAI초신경
홈
뉴스
최신 연구 논문
튜토리얼
데이터셋
백과사전
SOTA
LLM 모델
GPU 랭킹
컨퍼런스
전체 검색
소개
한국어
HyperAI초신경
Toggle sidebar
전체 사이트 검색...
⌘
K
홈
SOTA
Multiple Object Tracking
Multiple Object Tracking On Kitti Test Online
Multiple Object Tracking On Kitti Test Online
평가 지표
HOTA
IDSW
MOTA
평가 결과
이 벤치마크에서 각 모델의 성능 결과
Columns
모델 이름
HOTA
IDSW
MOTA
Paper Title
Repository
IMM-JHSE
79.21
177
89.8
One Homography is All You Need: IMM-based Joint Homography and Multiple Object State Estimation
EagerMOT
74.39
239
87.82
EagerMOT: 3D Multi-Object Tracking via Sensor Fusion
mmMOT
62.05
-
84.77
Robust Multi-Modality Multi-Object Tracking
KFDL
81.06
22
90.29
-
-
LEGO
80.75
214
90.61
LEGO: Learning and Graph-Optimized Modular Tracker for Online Multi-Object Tracking with Point Clouds
-
NOMT
-
-
78.15
Near-Online Multi-target Tracking with Aggregated Local Flow Descriptor
-
QD-3DT
72.77
-
86.41
Monocular Quasi-Dense 3D Object Tracking
PMBM
-
-
80.39
Mono-Camera 3D Multi-Object Tracking Using Deep Learning Detections and PMBM Filtering
-
JRMOT
69.61
-
85.70
JRMOT: A Real-Time 3D Multi-Object Tracker and a New Large-Scale Dataset
mmMOT-normal
-
-
84.77
Robust Multi-Modality Multi-Object Tracking
CenterTrack
73.02
-
89.44
Tracking Objects as Points
MDP
-
-
76.59
Learning to Track: Online Multi-Object Tracking by Decision Making
-
CIWT
-
-
75.39
Combined Image- and World-Space Tracking in Traffic Scenes
-
MCTrack
81.07
64
89.82
MCTrack: A Unified 3D Multi-Object Tracking Framework for Autonomous Driving
UCMCTrack
77.1
-
90.4
UCMCTrack: Multi-Object Tracking with Uniform Camera Motion Compensation
NOMT-HM
-
-
75.20
Near-Online Multi-target Tracking with Aggregated Local Flow Descriptor
-
PC-TCNN
80.90
37
78.46
-
-
SRK ODESA
-
-
90.03
Learning Local Feature Descriptors for Multiple Object Tracking
-
SCEA
-
-
75.58
Online Multi-Object Tracking via Structural Constraint Event Aggregation
-
DSM
-
-
76.15
End-to-end Learning of Multi-sensor 3D Tracking by Detection
-
0 of 33 row(s) selected.
Previous
Next