HyperAI초신경
홈
뉴스
최신 연구 논문
튜토리얼
데이터셋
백과사전
SOTA
LLM 모델
GPU 랭킹
컨퍼런스
전체 검색
소개
한국어
HyperAI초신경
Toggle sidebar
전체 사이트 검색...
⌘
K
홈
SOTA
Multi Object Tracking
Multi Object Tracking On Mot17
Multi Object Tracking On Mot17
평가 지표
MOTA
평가 결과
이 벤치마크에서 각 모델의 성능 결과
Columns
모델 이름
MOTA
Paper Title
Repository
JBNOT
52.6
Multiple People Tracking using Body and Joint Detections
-
SparseTrack
81.0
SparseTrack: Multi-Object Tracking by Performing Scene Decomposition based on Pseudo-Depth
StrongSORT
79.6
StrongSORT: Make DeepSORT Great Again
Fast-StrongSORT
-
When to Extract ReID Features: A Selective Approach for Improved Multiple Object Tracking
DEFT
66.6
DEFT: Detection Embeddings for Tracking
Unicorn
77.2
Towards Grand Unification of Object Tracking
CenterTrack + TrajE
67.8
Multiple Object Tracking with Mixture Density Networks for Trajectory Estimation
-
CMTrack
80.7
A Confidence-Aware Matching Strategy For Generalized Multi-Object Tracking
BoostTrack+
80.6
BoostTrack: boosting the similarity measure and detection confidence for improved multiple object tracking
STGT
76.7
TransMOT: Spatial-Temporal Graph Transformer for Multiple Object Tracking
-
Deep OC-SORT
79.4
Deep OC-SORT: Multi-Pedestrian Tracking by Adaptive Re-Identification
TraDeS
69.1
Track to Detect and Segment: An Online Multi-Object Tracker
-
BoT-SORT
80.5
BoT-SORT: Robust Associations Multi-Pedestrian Tracking
C-TWiX
78.1
Learning Data Association for Multi-Object Tracking using Only Coordinates
GTR
75.3
Global Tracking Transformers
QDTrack
68.7
Quasi-Dense Similarity Learning for Multiple Object Tracking
IMM-JHSE
79.54
One Homography is All You Need: IMM-based Joint Homography and Multiple Object State Estimation
DeepMOT-Tracktor
53.7
How To Train Your Deep Multi-Object Tracker
TrackFormer
74.1
TrackFormer: Multi-Object Tracking with Transformers
MOTR
67.4
MOTR: End-to-End Multiple-Object Tracking with Transformer
0 of 44 row(s) selected.
Previous
Next