HyperAI
HyperAI초신경
홈
플랫폼
문서
뉴스
연구 논문
튜토리얼
데이터셋
백과사전
SOTA
LLM 모델
GPU 랭킹
컨퍼런스
전체 검색
소개
서비스 약관
개인정보 처리방침
한국어
HyperAI
HyperAI초신경
Toggle Sidebar
전체 사이트 검색...
⌘
K
Command Palette
Search for a command to run...
플랫폼
홈
SOTA
다중 레이블 이미지 분류
Multi Label Image Classification On
Multi Label Image Classification On
평가 지표
mAP (micro)
official split
평가 결과
이 벤치마크에서 각 모델의 성능 결과
Columns
모델 이름
mAP (micro)
official split
Paper Title
MoCo-v2 (ResNet18, fine tune)
89.3
No
Self-supervised Learning in Remote Sensing: A Review
ResNet50
-
-
In-domain representation learning for remote sensing
DINO-MC
88.75
No
Extending global-local view alignment for self-supervised learning with remote sensing imagery
ResNet50
-
Yes
Benchmarking and scaling of deep learning models for land cover image classification
MoCo-v3 (ViT-S/16, fine tune)
89.9
No
SSL4EO-S12: A Large-Scale Multi-Modal, Multi-Temporal Dataset for Self-Supervised Learning in Earth Observation
MAE (ViT-S/16, fine tune)
88.9
No
SSL4EO-S12: A Large-Scale Multi-Modal, Multi-Temporal Dataset for Self-Supervised Learning in Earth Observation
ViTM/20
-
Yes
Benchmarking and scaling of deep learning models for land cover image classification
WideResNet-B5-ECA
-
Yes
Benchmarking and scaling of deep learning models for land cover image classification
MoCo-v2 (ResNet50, fine tune)
91.8
No
SSL4EO-S12: A Large-Scale Multi-Modal, Multi-Temporal Dataset for Self-Supervised Learning in Earth Observation
MLPMixer
-
Yes
Benchmarking and scaling of deep learning models for land cover image classification
0 of 10 row(s) selected.
Previous
Next
Multi Label Image Classification On | SOTA | HyperAI초신경