HyperAIHyperAI초신경
홈뉴스연구 논문튜토리얼데이터셋백과사전SOTALLM 모델GPU 랭킹컨퍼런스
전체 검색
소개
한국어
HyperAIHyperAI초신경
  1. 홈
  2. SOTA
  3. 라이더 의미 분할
  4. Lidar Semantic Segmentation On Paris Lille 3D

Lidar Semantic Segmentation On Paris Lille 3D

평가 지표

mIOU

평가 결과

이 벤치마크에서 각 모델의 성능 결과

모델 이름
mIOU
Paper TitleRepository
ConvPoint0.759ConvPoint: Continuous Convolutions for Point Cloud Processing
GeomGCNN0.785Exploiting Local Geometry for Feature and Graph Construction for Better 3D Point Cloud Processing with Graph Neural Networks-
Feature Geometric Net (FG Net)0.819FG-Net: Fast Large-Scale LiDAR Point Clouds Understanding Network Leveraging Correlated Feature Mining and Geometric-Aware Modelling
Paris-Lille-3D0.31Paris-Lille-3D: a large and high-quality ground truth urban point cloud dataset for automatic segmentation and classification-
ConvPoint_Keras0.720ConvPoint: Continuous Convolutions for Point Cloud Processing
FKAConv0.827FKAConv: Feature-Kernel Alignment for Point Cloud Convolution
DA-supervised0.638CLOUDSPAM: Contrastive Learning On Unlabeled Data for Segmentation and Pre-Training Using Aggregated Point Clouds and MoCo-
KPConv deform0.759KPConv: Flexible and Deformable Convolution for Point Clouds
CLOUDSPAM0.738CLOUDSPAM: Contrastive Learning On Unlabeled Data for Segmentation and Pre-Training Using Aggregated Point Clouds and MoCo-
0 of 9 row(s) selected.
HyperAI

학습, 이해, 실천, 커뮤니티와 함께 인공지능의 미래를 구축하다

한국어

소개

회사 소개데이터셋 도움말

제품

뉴스튜토리얼데이터셋백과사전

링크

TVM 한국어Apache TVMOpenBayes

© HyperAI초신경

TwitterBilibili