HyperAI
HyperAI초신경
홈
플랫폼
문서
뉴스
연구 논문
튜토리얼
데이터셋
백과사전
SOTA
LLM 모델
GPU 랭킹
컨퍼런스
전체 검색
소개
서비스 약관
개인정보 처리방침
한국어
HyperAI
HyperAI초신경
Toggle Sidebar
전체 사이트 검색...
⌘
K
Command Palette
Search for a command to run...
플랫폼
홈
SOTA
라이더 의미 분할
Lidar Semantic Segmentation On Paris Lille 3D
Lidar Semantic Segmentation On Paris Lille 3D
평가 지표
mIOU
평가 결과
이 벤치마크에서 각 모델의 성능 결과
Columns
모델 이름
mIOU
Paper Title
FKAConv
0.827
FKAConv: Feature-Kernel Alignment for Point Cloud Convolution
Feature Geometric Net (FG Net)
0.819
FG-Net: Fast Large-Scale LiDAR Point Clouds Understanding Network Leveraging Correlated Feature Mining and Geometric-Aware Modelling
GeomGCNN
0.785
Exploiting Local Geometry for Feature and Graph Construction for Better 3D Point Cloud Processing with Graph Neural Networks
ConvPoint
0.759
ConvPoint: Continuous Convolutions for Point Cloud Processing
KPConv deform
0.759
KPConv: Flexible and Deformable Convolution for Point Clouds
CLOUDSPAM
0.738
CLOUDSPAM: Contrastive Learning On Unlabeled Data for Segmentation and Pre-Training Using Aggregated Point Clouds and MoCo
ConvPoint_Keras
0.720
ConvPoint: Continuous Convolutions for Point Cloud Processing
DA-supervised
0.638
CLOUDSPAM: Contrastive Learning On Unlabeled Data for Segmentation and Pre-Training Using Aggregated Point Clouds and MoCo
Paris-Lille-3D
0.31
Paris-Lille-3D: a large and high-quality ground truth urban point cloud dataset for automatic segmentation and classification
0 of 9 row(s) selected.
Previous
Next
Lidar Semantic Segmentation On Paris Lille 3D | SOTA | HyperAI초신경