HyperAI
HyperAI초신경
홈
뉴스
최신 연구 논문
튜토리얼
데이터셋
백과사전
SOTA
LLM 모델
GPU 랭킹
컨퍼런스
전체 검색
소개
한국어
HyperAI
HyperAI초신경
Toggle sidebar
전체 사이트 검색...
⌘
K
홈
SOTA
이미지 클러스터링
Image Clustering On Imagenet 10
Image Clustering On Imagenet 10
평가 지표
Accuracy
NMI
평가 결과
이 벤치마크에서 각 모델의 성능 결과
Columns
모델 이름
Accuracy
NMI
Paper Title
Repository
JULE
0.300
0.175
Joint Unsupervised Learning of Deep Representations and Image Clusters
-
ConCURL
0.958
0.907
Representation Learning for Clustering via Building Consensus
-
DPAC
0.97
0.925
Deep Online Probability Aggregation Clustering
-
CoHiClust
0.953
0.907
Contrastive Hierarchical Clustering
-
VAE
0.334
0.193
Auto-Encoding Variational Bayes
-
SPICE (Full ImageNet pre-train)
0.969
0.927
SPICE: Semantic Pseudo-labeling for Image Clustering
-
TCL
0.895
0.875
Twin Contrastive Learning for Online Clustering
-
IDFD
0.954
0.898
Clustering-friendly Representation Learning via Instance Discrimination and Feature Decorrelation
-
MMDC
0.811
0.719
Multi-Modal Deep Clustering: Unsupervised Partitioning of Images
-
TAC
0.992
0.985
Image Clustering with External Guidance
-
ProPos*
0.962
0.908
Learning Representation for Clustering via Prototype Scattering and Positive Sampling
-
CC
0.893
0.859
Contrastive Clustering
-
DEC
0.381
0.282
Unsupervised Deep Embedding for Clustering Analysis
-
C3
0.942
0.905
C3: Cross-instance guided Contrastive Clustering
-
DCCM
0.71
0.608
Deep Comprehensive Correlation Mining for Image Clustering
-
DAC
0.527
0.394
Deep Adaptive Image Clustering
GAN
0.346
0.225
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
-
ProPos
0.956
0.896
Learning Representation for Clustering via Prototype Scattering and Positive Sampling
-
0 of 18 row(s) selected.
Previous
Next
Image Clustering On Imagenet 10 | SOTA | HyperAI초신경