HyperAI초신경
홈
뉴스
최신 연구 논문
튜토리얼
데이터셋
백과사전
SOTA
LLM 모델
GPU 랭킹
컨퍼런스
전체 검색
소개
한국어
HyperAI초신경
Toggle sidebar
전체 사이트 검색...
⌘
K
홈
SOTA
Image Clustering
Image Clustering On Imagenet 10
Image Clustering On Imagenet 10
평가 지표
Accuracy
NMI
평가 결과
이 벤치마크에서 각 모델의 성능 결과
Columns
모델 이름
Accuracy
NMI
Paper Title
Repository
JULE
0.300
0.175
Joint Unsupervised Learning of Deep Representations and Image Clusters
ConCURL
0.958
0.907
Representation Learning for Clustering via Building Consensus
DPAC
0.97
0.925
Deep Online Probability Aggregation Clustering
-
CoHiClust
0.953
0.907
Contrastive Hierarchical Clustering
VAE
0.334
0.193
Auto-Encoding Variational Bayes
SPICE (Full ImageNet pre-train)
0.969
0.927
SPICE: Semantic Pseudo-labeling for Image Clustering
TCL
0.895
0.875
Twin Contrastive Learning for Online Clustering
IDFD
0.954
0.898
Clustering-friendly Representation Learning via Instance Discrimination and Feature Decorrelation
MMDC
0.811
0.719
Multi-Modal Deep Clustering: Unsupervised Partitioning of Images
TAC
0.992
0.985
Image Clustering with External Guidance
ProPos*
0.962
0.908
Learning Representation for Clustering via Prototype Scattering and Positive Sampling
CC
0.893
0.859
Contrastive Clustering
DEC
0.381
0.282
Unsupervised Deep Embedding for Clustering Analysis
C3
0.942
0.905
C3: Cross-instance guided Contrastive Clustering
DCCM
0.71
0.608
Deep Comprehensive Correlation Mining for Image Clustering
DAC
0.527
0.394
Deep Adaptive Image Clustering
GAN
0.346
0.225
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
ProPos
0.956
0.896
Learning Representation for Clustering via Prototype Scattering and Positive Sampling
0 of 18 row(s) selected.
Previous
Next