HyperAI
HyperAI초신경
홈
플랫폼
문서
뉴스
연구 논문
튜토리얼
데이터셋
백과사전
SOTA
LLM 모델
GPU 랭킹
컨퍼런스
전체 검색
소개
서비스 약관
개인정보 처리방침
한국어
HyperAI
HyperAI초신경
Toggle Sidebar
전체 사이트 검색...
⌘
K
Command Palette
Search for a command to run...
플랫폼
홈
SOTA
이미지 클러스터링
Image Clustering On Imagenet 10
Image Clustering On Imagenet 10
평가 지표
Accuracy
NMI
평가 결과
이 벤치마크에서 각 모델의 성능 결과
Columns
모델 이름
Accuracy
NMI
Paper Title
TAC
0.992
0.985
Image Clustering with External Guidance
DPAC
0.97
0.925
Deep Online Probability Aggregation Clustering
SPICE (Full ImageNet pre-train)
0.969
0.927
SPICE: Semantic Pseudo-labeling for Image Clustering
ProPos*
0.962
0.908
Learning Representation for Clustering via Prototype Scattering and Positive Sampling
ConCURL
0.958
0.907
Representation Learning for Clustering via Building Consensus
ProPos
0.956
0.896
Learning Representation for Clustering via Prototype Scattering and Positive Sampling
IDFD
0.954
0.898
Clustering-friendly Representation Learning via Instance Discrimination and Feature Decorrelation
CoHiClust
0.953
0.907
Contrastive Hierarchical Clustering
C3
0.942
0.905
C3: Cross-instance guided Contrastive Clustering
TCL
0.895
0.875
Twin Contrastive Learning for Online Clustering
CC
0.893
0.859
Contrastive Clustering
MMDC
0.811
0.719
Multi-Modal Deep Clustering: Unsupervised Partitioning of Images
DCCM
0.71
0.608
Deep Comprehensive Correlation Mining for Image Clustering
DAC
0.527
0.394
Deep Adaptive Image Clustering
DEC
0.381
0.282
Unsupervised Deep Embedding for Clustering Analysis
GAN
0.346
0.225
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
VAE
0.334
0.193
Auto-Encoding Variational Bayes
JULE
0.300
0.175
Joint Unsupervised Learning of Deep Representations and Image Clusters
0 of 18 row(s) selected.
Previous
Next
Image Clustering On Imagenet 10 | SOTA | HyperAI초신경