HyperAI초신경
홈
뉴스
최신 연구 논문
튜토리얼
데이터셋
백과사전
SOTA
LLM 모델
GPU 랭킹
컨퍼런스
전체 검색
소개
한국어
HyperAI초신경
Toggle sidebar
전체 사이트 검색...
⌘
K
홈
SOTA
Formation Energy
Formation Energy On Materials Project
Formation Energy On Materials Project
평가 지표
MAE
평가 결과
이 벤치마크에서 각 모델의 성능 결과
Columns
모델 이름
MAE
Paper Title
Repository
Matformer
21.2
Periodic Graph Transformers for Crystal Material Property Prediction
SchNet
35
SchNet - a deep learning architecture for molecules and materials
PotNet
18.8
Efficient Approximations of Complete Interatomic Potentials for Crystal Property Prediction
MEGNet
28
Graph Networks as a Universal Machine Learning Framework for Molecules and Crystals
SchNet
31.8
Neural Message Passing with Edge Updates for Predicting Properties of Molecules and Materials
CGCNN
39
Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Properties
CartNet
17.47
A Cartesian Encoding Graph Neural Network for Crystal Structures Property Prediction: Application to Thermal Ellipsoid Estimation
MT-CGCNN
41
MT-CGCNN: Integrating Crystal Graph Convolutional Neural Network with Multitask Learning for Material Property Prediction
SchNet-edge-update
22.7
Neural Message Passing with Edge Updates for Predicting Properties of Molecules and Materials
0 of 9 row(s) selected.
Previous
Next