HyperAI
HyperAI초신경
홈
뉴스
최신 연구 논문
튜토리얼
데이터셋
백과사전
SOTA
LLM 모델
GPU 랭킹
컨퍼런스
전체 검색
소개
한국어
HyperAI
HyperAI초신경
Toggle sidebar
전체 사이트 검색...
⌘
K
홈
SOTA
형성 에너지
Formation Energy On Materials Project
Formation Energy On Materials Project
평가 지표
MAE
평가 결과
이 벤치마크에서 각 모델의 성능 결과
Columns
모델 이름
MAE
Paper Title
Repository
Matformer
21.2
Periodic Graph Transformers for Crystal Material Property Prediction
-
SchNet
35
SchNet - a deep learning architecture for molecules and materials
-
PotNet
18.8
Efficient Approximations of Complete Interatomic Potentials for Crystal Property Prediction
-
MEGNet
28
Graph Networks as a Universal Machine Learning Framework for Molecules and Crystals
-
SchNet
31.8
Neural Message Passing with Edge Updates for Predicting Properties of Molecules and Materials
-
CGCNN
39
Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Properties
-
CartNet
17.47
A Cartesian Encoding Graph Neural Network for Crystal Structures Property Prediction: Application to Thermal Ellipsoid Estimation
-
MT-CGCNN
41
MT-CGCNN: Integrating Crystal Graph Convolutional Neural Network with Multitask Learning for Material Property Prediction
-
SchNet-edge-update
22.7
Neural Message Passing with Edge Updates for Predicting Properties of Molecules and Materials
-
0 of 9 row(s) selected.
Previous
Next
Formation Energy On Materials Project | SOTA | HyperAI초신경