HyperAI초신경

Few Shot Semantic Segmentation On Pascal 5I 1

평가 지표

Mean IoU

평가 결과

이 벤치마크에서 각 모델의 성능 결과

비교 표
모델 이름Mean IoU
clustered-patch-element-connection-for-few60.5
dense-gaussian-processes-for-few-shot64.8
dense-cross-query-and-support-attention69.3
bridge-the-points-graph-based-few-shot72.1
interclass-prototype-relation-for-few-shot65.7
pyramid-graph-networks-with-connection56.0
iterative-few-shot-semantic-segmentation-from61.1
adaptive-prototype-learning-and-allocation59.31
hmfs-hybrid-masking-for-few-shot-segmentation65.8
apanet-adaptive-prototypes-alignment-network64
doubly-deformable-aggregation-of-covariance67.5
hierarchical-dense-correlation-distillation65.1
doubly-deformable-aggregation-of-covariance65.7
fecanet-boosting-few-shot-semantic64.3
hybrid-mamba-for-few-shot-segmentation67.3
visual-and-textual-prior-guided-mask-assemble74.1
few-shot-segmentation-without-meta-learning-a59.7
seggpt-segmenting-everything-in-context83.2
mianet-aggregating-unbiased-instance-and-168.72
msdnet-multi-scale-decoder-for-few-shot64.7
feature-proxy-transformer-for-few-shot68.8
quaternion-valued-correlation-learning-for64.3
few-shot-semantic-segmentation-with-support60.8
doubly-deformable-aggregation-of-covariance66.8
self-calibrated-cross-attention-network-for68.3
panet-few-shot-image-semantic-segmentation48.1
self-calibrated-cross-attention-network-for66.8
doubly-deformable-aggregation-of-covariance61.8
adaptive-prototype-learning-and-allocation59.29
diffss-diffusion-model-for-few-shot-semantic70.2
quaternion-valued-correlation-learning-for60.6
masked-cross-image-encoding-for-few-shot65.93
intermediate-prototype-mining-transformer-for66.1
hybrid-mamba-for-few-shot-segmentation70.4
quaternion-valued-correlation-learning-for67
hypercorrelation-squeeze-for-few-shot64.0
few-shot-segmentation-without-meta-learning-a59.4
simpler-is-better-few-shot-semantic58
eliminating-feature-ambiguity-for-few-shot70.3
msanet-multi-similarity-and-attention-169.13
prototype-as-query-for-few-shot-semantic63.2
visual-and-textual-prior-guided-mask-assemble77.6
diffss-diffusion-model-for-few-shot-semantic66.2
integrative-few-shot-learning-for66.9
prior-guided-feature-enrichment-network-for60.1
singular-value-fine-tuning-few-shot-164.87
self-guided-and-cross-guided-learning-for-few61.8
dense-cross-query-and-support-attention64.6
simpler-is-better-few-shot-semantic56.4
cost-aggregation-with-4d-convolutional-swin67.9
hypercorrelation-squeeze-for-few-shot66.2
dense-gaussian-processes-for-few-shot63.5
visual-and-textual-prior-guided-mask-assemble74.1
prior-guided-feature-enrichment-network-for58
few-shot-segmentation-via-cycle-consistent64.3
diffss-diffusion-model-for-few-shot-semantic69.3
msanet-multi-similarity-and-attention-168.52
doubly-deformable-aggregation-of-covariance69.1
singular-value-fine-tuning-few-shot-168.95
self-guided-and-cross-guided-learning-for-few57.5
mining-latent-classes-for-few-shot63.8
prototype-mixture-models-for-few-shot56.3
dense-cross-query-and-support-attention-
singular-value-fine-tuning-few-shot-168.15
hmfs-hybrid-masking-for-few-shot-segmentation67.8
feature-weighting-and-boosting-for-few-shot51.9
self-support-few-shot-semantic-segmentation61.4
learning-what-not-to-segment-a-new67.81
feature-weighting-and-boosting-for-few-shot56.2
hmfs-hybrid-masking-for-few-shot-segmentation65
interclass-prototype-relation-for-few-shot67.5
msdnet-multi-scale-decoder-for-few-shot64.3
cost-aggregation-with-4d-convolutional-swin65.5
mianet-aggregating-unbiased-instance-and-167.63
prototype-as-query-for-few-shot-semantic63.1
a-new-local-transformation-module-for-few57.0
hmfs-hybrid-masking-for-few-shot-segmentation66.7
msanet-multi-similarity-and-attention-165.76
eliminating-feature-ambiguity-for-few-shot66.6
masked-cross-image-encoding-for-few-shot62.87
feature-proxy-transformer-for-few-shot64.7
anti-aliasing-semantic-reconstruction-for-few58.16
sg-one-similarity-guidance-network-for-one46.3
cost-aggregation-is-all-you-need-for-few-shot67.5
dynamic-prototype-convolution-network-for-few66.7
iterative-few-shot-semantic-segmentation-from56.5
self-support-few-shot-semantic-segmentation64.6
few-shot-semantic-segmentation-with-support65.7
part-aware-prototype-network-for-few-shot51.5
msi-maximize-support-set-information-for-few70.1
hypercorrelation-squeeze-for-few-shot59.7
beyond-the-prototype-divide-and-conquer62.80
singular-value-fine-tuning-few-shot-164.33
apanet-adaptive-prototypes-alignment-network59
clustered-patch-element-connection-for-few60.4
hierarchical-dense-correlation-distillation69.4
anti-aliasing-semantic-reconstruction-for-few55.66
mianet-aggregating-unbiased-instance-and-167.10
few-shot-semantic-segmentation-with-support65.3
intermediate-prototype-mining-transformer-for66.8
canet-class-agnostic-segmentation-networks55.4
mining-latent-classes-for-few-shot63.6
prior-guided-feature-enrichment-network-for60.8
apanet-adaptive-prototypes-alignment-network63
fecanet-boosting-few-shot-semantic67.4