Few Shot Image Classification On Fc100 5 Way
평가 지표
Accuracy
평가 결과
이 벤치마크에서 각 모델의 성능 결과
비교 표
모델 이름 | Accuracy |
---|---|
task-augmentation-by-rotating-for-meta | 49.77 |
bridging-multi-task-learning-and-meta | 42.4 |
rethinking-generalization-in-few-shot-1 | 47.68 |
sparse-spatial-transformers-for-few-shot | 43.72 |
adaptive-dimension-reduction-and-variational | 57.27 |
task-augmentation-by-rotating-for-meta | 51.35 |
meta-transfer-learning-for-few-shot-learning | 45.1 |
complementing-representation-deficiency-in | 40.7 |
exploring-complementary-strengths-of | 47.76 |
easy-ensemble-augmented-shot-y-shaped | 47.94 |
fast-and-generalized-adaptation-for-few-shot | 41.6 |
self-supervised-knowledge-distillation-for | 46.5 |
easy-ensemble-augmented-shot-y-shaped | 54.13 |
enhancing-few-shot-image-classification | 44.78 |
meta-learning-with-differentiable-convex | 47.2 |
pseudo-shots-few-shot-learning-with-auxiliary | 50.57 |
attribute-surrogates-learning-and-spectral | 48.27 |
complementing-representation-deficiency-in | 41 |
constellation-nets-for-few-shot-learning | 43.8 |
easy-ensemble-augmented-shot-y-shaped | 48.07 |
easy-ensemble-augmented-shot-y-shaped | 54.47 |
tadam-task-dependent-adaptive-metric-for | 40.1 |