소수 샷 이미지 분류

Few-Shot 이미지 분류는 몇 개의 라벨된 샘플(일반적으로 6개 미만)을 사용하여 새로운 이미지를 분류하는 컴퓨터 비전 작업입니다. 이 작업의 목표는 모델이 최소한의 감독과 데이터 요구 사항으로 새로운 카테고리를 신속하게 인식하고 분류할 수 있도록 하는 것입니다. 이를 통해 제한된 데이터 조건에서도 모델의 일반화 능력을 향상시킵니다. 이 기술은 특히 데이터 수집이 어려운 경우나 비용이 많이 드는 상황에서 실질적인 가치를 지니고 있습니다.

Mini-Imagenet 5-way (1-shot)
PEMnE-BMS* (transductive)
Mini-Imagenet 5-way (5-shot)
CAML [Laion-2b]
Tiered ImageNet 5-way (5-shot)
CAML [Laion-2b]
Tiered ImageNet 5-way (1-shot)
PT+MAP
CIFAR-FS 5-way (5-shot)
PT+MAP+SF+SOT (transductive)
CIFAR-FS 5-way (1-shot)
PT+MAP+SF+SOT (transductive)
CUB 200 5-way 1-shot
PT+MAP+SF+BPA (transductive)
CUB 200 5-way 5-shot
PT+MAP+SF+SOT (transductive)
FC100 5-way (1-shot)
R2-D2+Task Aug
FC100 5-way (5-shot)
Meta-Dataset
URT
OMNIGLOT - 1-Shot, 20-way
GCR
OMNIGLOT - 5-Shot, 20-way
MC2+
OMNIGLOT - 1-Shot, 5-way
MC2+
Mini-ImageNet - 1-Shot Learning
PT+MAP
OMNIGLOT - 5-Shot, 5-way
DCN6-E
Mini-Imagenet 10-way (1-shot)
Transductive CNAPS + FETI
Mini-Imagenet 10-way (5-shot)
Transductive CNAPS + FETI
Meta-Dataset Rank
URT
Tiered ImageNet 10-way (1-shot)
Transductive CNAPS + FETI
Tiered ImageNet 10-way (5-shot)
Transductive CNAPS + FETI
Dirichlet Mini-Imagenet (5-way, 1-shot)
alpha-TIM
Dirichlet Mini-Imagenet (5-way, 5-shot)
alpha-TIM
Mini-ImageNet-CUB 5-way (1-shot)
PT+MAP
Dirichlet Tiered-Imagenet (5-way, 1-shot)
Dirichlet Tiered-Imagenet (5-way, 5-shot)
alpha-TIM
Dirichlet CUB-200 (5-way, 1-shot)
Dirichlet CUB-200 (5-way, 5-shot)
ImageNet - 1-shot
ViT-MoE-15B (Every-2)
ImageNet - 5-shot
ViT-MoE-15B (Every-2)
ImageNet-FS (2-shot, novel)
ImageNet-FS (5-shot, all)
KGTN-ens (ResNet-50, h+g, max)
Mini-ImageNet-CUB 5-way (5-shot)
PT+MAP
Bongard-HOI
Human (Amateur)
ImageNet - 10-shot
ViT-MoE-15B (Every-2)
ImageNet-FS (1-shot, novel)
Mini-Imagenet 20-way (1-shot)
TIM-GD
Mini-Imagenet 20-way (5-shot)
TIM-GD
Stanford Dogs 5-way (5-shot)
Stanford Cars 5-way (1-shot)
MATANet
Stanford Cars 5-way (5-shot)
MATANet
CUB-200-2011 - 0-Shot
Word CNN-RNN (DS-SJE Embedding)
ImageNet - 0-Shot
CLIP (ViT B/32)
Mini-Imagenet 5-way (10-shot)
PT+MAP
CUB 200 50-way (0-shot)
Prototypical Networks
Caltech-256 5-way (1-shot)
CUB-200 - 0-Shot Learning
TAFE-Net
ImageNet-FS (5-shot, novel)
ORBIT Clutter Video Evaluation
ProtoNetsVideo
Stanford Dogs 5-way (1-shot)
MATANet
CIFAR100 5-way (1-shot)
ImageNet (1-shot)
ImageNet-FS (10-shot, novel)
ImageNet-FS (1-shot, all)
ImageNet-FS (2-shot, all)
ImageNet-FS (10-shot, all)
KGTN (ResNet-50)
Mini-ImageNet to CUB - 5 shot learning
TIM-GD
OMNIGLOT-EMNIST 5-way (1-shot)
HyperShot
OMNIGLOT-EMNIST 5-way (5-shot)
ORBIT Clean Video Evaluation
SimpleCNAPs + LITE
SUN - 0-Shot
Synthesised Classifier
aPY - 0-Shot
TAFE-Net
AWA - 0-Shot
Synthesised Classifier
AWA1 - 0-Shot
AWA2 - 0-Shot
Caltech-256 5-way (5-shot)
MergedNet-Concat
Caltech101
PRE
CIFAR-FS - 1-Shot Learning
pseudo-shots
CIFAR-FS - 5-Shot Learning
pseudo-shots
CUB-200-2011 5-way (1-shot)
MATANet
CUB-200-2011 5-way (5-shot)
MATANet
CUB 200 5-way
EASY 3xResNet12 (transductive)
FC100 5-way (10-shot)
MTL
Fewshot-CIFAR100 - 1-Shot Learning
pseudo-shots
Fewshot-CIFAR100 - 5-Shot Learning
pseudo-shots
Flowers-102 - 0-Shot
Word CNN-RNN (DS-SJE Embedding)
iNaturalist (227-way multi-shot)
LaplacianShot
iNaturalist 2018 - 1-shot
iNaturalist 2018 - 5-shot
iNaturalist 2018 - 10-shot
mini-ImageNet - 100-Way
GCR
miniImagenet → CUB (5-way 1-shot)
LaplacianShot
miniImagenet → CUB (5-way 5-shot)
LaplacianShot
OMNIGLOT - 1-Shot, 423 way
APL
OMNIGLOT - 1-Shot, 1000 way
APL
OMNIGLOT - 5-Shot, 423 way
APL
OMNIGLOT - 5-Shot, 1000 way
Oxford 102 Flower
RS-FSL
UT Zappos50K
CIFAR-100