Chinese Named Entity Recognition On Ontonotes
평가 지표
F1
Precision
Recall
평가 결과
이 벤치마크에서 각 모델의 성능 결과
비교 표
모델 이름 | F1 | Precision | Recall |
---|---|---|---|
nflat-non-flat-lattice-transformer-for | 77.21 | 75.17 | 79.37 |
chinese-ner-using-lattice-lstm | 73.88 | - | - |
a-lexicon-based-graph-neural-network-for | 74.89 | 76.13 | 73.68 |
flat-chinese-ner-using-flat-lattice | 76.45 | - | - |
slk-ner-exploiting-second-order-lexicon | 80.2 | - | - |
simplify-the-usage-of-lexicon-in-chinese-ner | 75.54 | - | - |
unified-named-entity-recognition-as-word-word | 83.08 | - | - |
boundary-smoothing-for-named-entity-1 | 82.83 | - | - |
improving-named-entity-recognition-with | 81.18 | - | - |
can-ner-convolutional-attention-network | 73.64 | 75.05 | 72.29 |
a-unified-mrc-framework-for-named-entity | 82.11 | - | - |
flat-chinese-ner-using-flat-lattice | 81.82 | - | - |
fgn-fusion-glyph-network-for-chinese-named | 82.04 | - | - |
dice-loss-for-data-imbalanced-nlp-tasks | 84.47 | - | - |
glyce-glyph-vectors-for-chinese-character | 80.62 | 81.87 | 81.4 |